balanced inhibiting profile against the acetylcholinesterase enzyme (galantamine) and the NMDA receptor (memantine): AChE IC50 =0.695 muM; NMDAR Ki 2.32 muM
Alzheimer's disease (AD) is a chronic pathological condition that leads to neurodegeneration, loss of intellectual abilities, including cognition and memory, and ultimately to death. It is widely recognized that AD is a multifactorial disease, where different pathological cascades (mainly amyloid and tau) contribute to neural death and to the clinical outcome related to the disease. The currently available drugs for AD were developed according to the one-target, one-drug paradigm. In recent times, multi-target strategies have begun to play an increasingly central role in the discovery of more efficacious candidates for complex neurological conditions, including AD. In this study, we report on the in vivo pharmacological characterization of ARN14140, a new chemical entity, which was obtained through a multi-target structure-activity relationship campaign, and which showed a balanced inhibiting profile against the acetylcholinesterase enzyme and the NMDA receptor. Based on the initial promising biochemical data, ARN14140 is here studied in mice treated with the amyloidogenic fragment 25-35 of the amyloid-beta peptide, a consolidated non-transgenic AD model. Sub-chronically treating animals with ARN14140 leads to a prevention of the cognitive impairment and of biomarker levels connected to neurodegeneration, demonstrating its neuroprotective potential as new AD agent.
Herein we report on a novel series of multitargeted compounds obtained by linking together galantamine and memantine. The compounds were designed by taking advantage of the crystal structures of acetylcholinesterase (AChE) in complex with galantamine derivatives. Sixteen novel derivatives were synthesized, using spacers of different lengths and chemical composition. The molecules were then tested as inhibitors of AChE and as binders of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Some of the new compounds were nanomolar inhibitors of AChE and showed micromolar affinities for NMDAR. All compounds were also tested for selectivity toward NMDAR containing the 2B subunit (NR2B). Some of the new derivatives showed a micromolar affinity for NR2B. Finally, selected compounds were tested using a cell-based assay to measure their neuroprotective activity. Three of them showed a remarkable neuroprotective profile, inhibiting the NMDA-induced neurotoxicity at subnanomolar concentrations (e.g., 5, named memagal, IC(50) = 0.28 nM).