(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Saccharomycotina: NE > Saccharomycetes: NE > Saccharomycetales: NE > Saccharomycetaceae: NE > Saccharomyces: NE > Saccharomyces cerevisiae: NE
6_AlphaBeta_hydrolase : yeast-SCYNR064CSaccharomycescerevisiae SCYNR064C, yeast-ynl5Saccharomyces cerevisiae (Baker's yeast) YNL115C hypothetical 74.0 kda protein in mls1-rpc19 intergenic region, yeast-YOR084W Saccharomyces cerevisiae (Baker's yeast) Peroxisomal membrane protein LPX1 chromosome xv reading frame orf yor084w, yeast-ymc0Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). Uncharacterized protein YML020W. ABHD11-Acetyl_transferase : yeast-yg1lSaccharomyces cerevisiae (Baker's yeast) IMO32 hypothetical 38.5 kda protein in erv1-gls2 intergenic region, yeast-yg19Saccharomyces cerevisiae (Baker's yeast) EAT1 YGR015C hypothetical 37.9 kda protein in msb2-uga1 intergenic region. ABHD13-BEM46 : yeast-yn60Saccharomyces cerevisiae (Baker's yeast) hypothetical 32.3 kda protein in kre1-hxt14 intergenic region. abh_upf0017 : yeast-MCFS1Saccharomyces cerevisiae (Baker's yeast) Acyl-coenzymeA:ethanol O-acyltransferase 51.7 kda sec62-msy1 intergenic region ypl095c, yeast-MCFS2Saccharomyces cerevisiae (Baker's yeast) EHT1, MCFS2, YBR177C, YBR1239 alcohol acyl transferase (octanoyl-CoA:ethanol acyltransferase also thioesterase), yeast-ym60Saccharomyces cerevisiae (Baker's yeast) monoacylglycerol lipase YMR210W 51.4 kda protein YM8261.04 in rar1-scj1 intergenic region. Acidic_Lipase : yeast-tgl1Saccharomyces cerevisiae (Baker's yeast) triglyceride lipase-cholesterol esterase (EC 3.1.1.-) Tgl1p, yeast-YLL012WSaccharomyces cerevisiae (Baker's yeast) chromosome xii yll012w Yeh1p Steryl ester hydrolase, yeast-YLR020CSaccharomyces cerevisiae (Baker's yeast) chromosome xii ylr020c Yeh2p. AlphaBeta_hydrolase : yeast-LDH1Saccharomyces cerevisiae (Yeast) Lipid droplet hydrolase 1 chromosome II reading frame ORF YBR204c, yeast-YDL057WSaccharomyces cerevisiae (Baker's yeast) chromosome IV reading frame orf ydl057w. Arb2_domain : yeast-hda1 Saccharomyces cerevisiae (Baker's yeast); Saccharomyces cerevisiae x Saccharomyces kudriavzevii . Histone deacetylase HDA1 (only c-term Arb2 domain). Carboxypeptidase_S10 : yeast-cbpy1 Saccharomyces cerevisiae Carboxypeptidase Y, vacuolar PRC1 gene encoding preproprotein carboxypeptidase Y (CPY), yeast-kex01 Saccharomyces cerevisiae, yeast Pheromone-processing carboxypeptidase KEX1, yeast-yby9Saccharomyces cerevisiae chromosome II reading frame ORF YBR139w. CGI-58_ABHD5_ABHD4 : yeast-cld1Saccharomyces cerevisiae (Baker's yeast) YGR110W hypothetical 52.0 kda protein in clb6-shy1 intergenic region, yeast-ECM18Saccharomyces cerevisiae (Baker's yeast) (and strains YJM789; AWRI1631; Lalvin EC1118 / Prise de mousse; RM11-1a; JAY291) hypothetical 53.2 kda extracellular matrix protein 18, yeast-ict1Saccharomyces cerevisiae (Baker's yeast) chromosome XII reading frame orf ylr099c Increased copper tolerance protein 1. Dienelactone_hydrolase : yeast-AIM2Saccharomyces cerevisiae (Baker's yeast) yae9 hypothetical 27.1 kda protein in acs1-gcv3 intergenic region, yeast-dlhhSaccharomyces cerevisiae (Baker's yeast) hydrolase) (dlh). DPP4N_Peptidase_S9 : yeast-dap1Saccharomyces cerevisiae (Baker's yeast) dipeptidyl aminopeptidase (STE13 or YCI1), yeast-dap2Saccharomyces cerevisiae (Baker's yeast) yhr028c gene for dipeptidyl aminopeptidase B (DPAP B). Duf_676 : yeast-ROG1Saccharomyces cerevisiae (Baker's yeast) Putative lipase ROG1 ygo4 78.1 kda protein in tip20-mrf1 intergenic region ygl144c, yeast-YDL109CSaccharomyces cerevisiae (Baker's yeast) chromosome IV reading frame orf ydl109c, yeast-YDR444WSaccharomyces cerevisiae (Baker's yeast) d9461.29p, yeast-yo059Saccharomyces cerevisiae (Baker's yeast) Putative lipase YOR059C LPL1 chromosome xv orf yor059c YOR29-10. Duf_726 : yeast-yfd4Saccharomyces cerevisiae (Baker's yeast) (strains YJM789; RM11-1a; AWRI1631) Uncharacterized membrane protein Mil1 YFL034W. FSH1 : yeast-FSH1 Saccharomyces cerevisiae (Baker's yeast); Saccharomyces arboricola; Saccharomyces eubayanus family of serine hydrolases 1 (EC 3.1.-.-) in aap1-smf2 intergenic region, yeast-FSH2Saccharomyces cerevisiae (Baker's yeast) hypothetical 24.5 kda protein in erg8-ubp8 intergenic region, yeast-FSH3Saccharomyces cerevisiae (Baker's yeast) hypothetical dihydrofolate reductase. Homoserine_transacetylase : yeast-met2Saccharomyces cerevisiae (Baker's yeast), Saccharomyces sp., Saccharomyces paradoxus, S. uvarum, S. bayanus, S. pastorianus, S carlsbergensis, S. bayanus x S. cerevisiae, Homoserine O-trans-acetylase. Kynurenine-formamidase : yeast-YDR428C Saccharomyces cerevisiae (Baker's yeast); Saccharomyces sp. Kynurenine formamidase KFA d9461.15p. LIDHydrolase : yeast-YPR147CSaccharomyces cerevisiae (Baker's yeast) YPR147cp lipid droplet associated enzyme triacylglycerol lipase and ester hydrolase. Lipase_3 : yeast-ATG15CDS from: Saccharomyces cerevisiae (and strain YJM789) lipase involved in lipid vesicles degradation YCR068W Cytoplasm to vacuole targeting protein 17 ATG15, yeast-yj77Saccharomyces cerevisiae chromosome X reading frame ORF YJR107w. LYsophospholipase_carboxylesterase : yeast-YLR118cSaccharomyces cerevisiae Ylr118c protein and gene in chromosome XII cosmid 9233. Monoglyceridelipase_lysophospholip : yeast-mgll Saccharomyces cerevisiae (Baker's yeast) MGLL Yju3p YKL094W YKL441 Monoglyceride lipase. PC-sterol_acyltransferase : yeast-pdatSaccharomyces cerevisiae (Baker's yeast) phospholipid:diacylglycerol acyltransferase (EC 2.3.1.158) (pdat) LRO1, yeast-yj68Saccharomyces cerevisiae (Baker's yeast) (and strain AWRI1631) hypothetical 74.1 kda protein in acr1-yuh1 intergenic region. PGAP1 : yeast-BST1Saccharomyces cerevisiae (Baker's yeast), BST1, YFL025C, GPI inositol-deacylase, yeast-tgl2Saccharomyces cerevisiae (Baker's yeast) (and strains YJM789; JAY291; AWRI1631; Lalvin EC1118 / Prise de mousse; RM11-1a) lipase 2 (EC 3.1.1.3) (triacylglycerol lipase). PPase_methylesterase_euk : yeast-ppme1Saccharomyces cerevisiae (Baker's yeast) protein phosphatase methylesterase 1 (EC 3.1.1.-) (pme-1) (yms2). Steryl_acetyl_hydrolase : yeast-SAY1Saccharomyces cerevisiae (Baker's yeast) hypothetical 48.5da prot YG5J chromosome VII. T6SS-TLE1 : yeasv-e7ltm5Saccharomyces cerevisiae (strain VIN 13) (Baker's yeast). YEL023C-like protein
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Saccharomyces cerevisiae S288c: N, E.
Saccharomyces cerevisiae YJM789: N, E.
Saccharomyces cerevisiae RM11-1a: N, E.
Saccharomyces cerevisiae AWRI1631: N, E.
Saccharomyces cerevisiae JAY291: N, E.
Saccharomyces cerevisiae EC1118: N, E.
Saccharomyces cerevisiae AWRI796: N, E.
Saccharomyces cerevisiae Lalvin QA23: N, E.
Saccharomyces cerevisiae Vin13: N, E.
Saccharomyces cerevisiae FostersO: N, E.
Saccharomyces cerevisiae FostersB: N, E.
Saccharomyces cerevisiae VL3: N, E.
Saccharomyces cerevisiae Kyokai no. 7: N, E.
Saccharomyces cerevisiae P301: N, E.
Saccharomyces cerevisiae R103: N, E.
Saccharomyces cerevisiae CEN.PK113-7D: N, E.
Saccharomyces cerevisiae R008: N, E.
Saccharomyces cerevisiae P283: N, E.
Saccharomyces cerevisiae YJM993: N, E.
Molecular evidence
Database
No mutation 4 structures(e.g. : 1PV1, 3C6B, 4FLM... more)(less) 1PV1: Crystal Structure Analysis of Yeast Hypothetical Protein: YJG8_YEAST, 3C6B: Reaction product of paraoxon and S-formylglutathione hydrolase W197I mutant, 4FLM: S-formylglutathione hydrolase W197I Variant containing Copper, 4FOL: S-formylglutathione hydrolase Variant H160I No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKVVKEFSVCGGRLIKLSHNSNSTKTSMNVNIYLPKHYYAQDFPRNKRIP TVFYLSGLTCTPDNASEKAFWQFQADKYGFAIVFPDTSPRGDEVANDPEG SWDFGQGAGFYLNATQEPYAQHYQMYDYIHKELPQTLDSHFNKNGDVKLD FLDNVAITGHSMGGYGAICGYLKGYSGKRYKSCSAFAPIVNPSNVPWGQK AFKGYLGEEKAQWEAYDPCLLIKNIRHVGDDRILIHVGDSDPFLEEHLKP ELLLEAVKATSWQDYVEIKKVHGFDHSYYFVSTFVPEHAEFHARNLGLI
References
7 moreTitle: A role for His-160 in peroxide inhibition of S. cerevisiae S-formylglutathione hydrolase: evidence for an oxidation sensitive motif Legler PM, Leary DH, Hervey WJt, Millard CB Ref: Archives of Biochemistry & Biophysics, 528:7, 2012 : PubMed
While the general catalytic mechanism of the widespread serine hydrolase superfamily has been documented extensively, much less is known about its varied modes of functional modulation within biological systems. Under oxidizing conditions, inhibition of Saccharomyces cerevisiae S-formylglutathione hydrolase (SFGH, homologous to human esterase D) activity is attributable to a cysteine (Cys-60) adjacent to its catalytic triad and approximately 8.0 A away from the Ogamma of the nucleophilic serine. Cys-60 is oxidized to a sulfenic acid in the structure of the Paraoxon-inhibited W197I variant (PDB 3C6B). The structural snap-shot captured an unstable reversibly oxidized state, but it remained unclear as to whether the oxidation occurred before, during, or after the reaction with the organophosphate inhibitor. To determine if the oxidation of Cys-60 was functionally linked to ester hydrolysis, we used kinetic analysis and site-directed mutagenesis in combination with X-ray crystallography. The essential nature of Cys-60 for oxidation is demonstrated by the C60S variant, which is not inhibited by peroxide in the presence or absence of substrate. In the presence of substrate, the rate of inhibition of the WT SFGH by peroxide increases 14-fold, suggesting uncompetitive behavior linking oxidation to ester hydrolysis. Here we found one variant, H160I, which is activated by peroxide. This variant is activated at comparable rates in the presence or absence of substrate, indicating that the conserved His-160 is involved in the inhibitory mechanism linking ester hydrolysis to the oxidation of Cys-60. Copper chloride inhibition experiments show that at least two metal ions bind and inhibit both WT and H160I. A structure of the Paraoxon-inhibited W197I variant soaked with CuCl(2) shows density for one metal ion per monomer at the N-terminus, and density around the Cys-60 sulfur consistent with a sulfinic acid, Cys-SO(2). A Dali structural similarity search uncovered two other enzymes (Bacillus subtilis RsbQ, 1WOM and Clostridium acetobutylicum Lipase-esterase, 3E0X) that contain a similar Cys adjacent to a catalytic triad. We speculate that the regulatory motif uncovered is conserved in some D-type esterases and discuss its structural similarities in the active site of human protective protein (HPP; also known as Cathepsin A).
Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1118 chromosome. These regions encompass 34 genes involved in key wine fermentation functions. Phylogeny and synteny analyses showed that 1 of these regions originated from a species closely related to the Saccharomyces genus, whereas the 2 other regions were of non-Saccharomyces origin. We identified Zygosaccharomyces bailii, a major contaminant of wine fermentations, as the donor species for 1 of these 2 regions. Although natural hybridization between Saccharomyces strains has been described, this report provides evidence that gene transfer may occur between Saccharomyces and non-Saccharomyces species. We show that the regions identified are frequent and differentially distributed among S. cerevisiae clades, being found almost exclusively in wine strains, suggesting acquisition through recent transfer events. Overall, these data show that the wine yeast genome is subject to constant remodeling through the contribution of exogenous genes. Our results suggest that these processes are favored by ecologic proximity and are involved in the molecular adaptation of wine yeasts to conditions of high sugar, low nitrogen, and high ethanol concentrations.
        
Title: Sequence of a 17.1 kb DNA fragment from chromosome X of Saccharomyces cerevisiae includes the mitochondrial ribosomal protein L8 Vandenbol M, Durand P, Dion C, Portetelle D, Hilger F Ref: Yeast, 11:57, 1995 : PubMed
We have sequenced a continuous segment of 17,137 bp on chromosome X. Sequence analysis of this stretch revealed 14 open reading frames (ORFs) at least 100 amino acids long. One gene, encoding the mitochondrial 60S ribosomal protein L8, had already been sequenced. Four ORF products show weak homologies with known protein sequences. The nine remaining ORF products have no homologies with sequences in data banks.
        
7 lessTitle: A role for His-160 in peroxide inhibition of S. cerevisiae S-formylglutathione hydrolase: evidence for an oxidation sensitive motif Legler PM, Leary DH, Hervey WJt, Millard CB Ref: Archives of Biochemistry & Biophysics, 528:7, 2012 : PubMed
While the general catalytic mechanism of the widespread serine hydrolase superfamily has been documented extensively, much less is known about its varied modes of functional modulation within biological systems. Under oxidizing conditions, inhibition of Saccharomyces cerevisiae S-formylglutathione hydrolase (SFGH, homologous to human esterase D) activity is attributable to a cysteine (Cys-60) adjacent to its catalytic triad and approximately 8.0 A away from the Ogamma of the nucleophilic serine. Cys-60 is oxidized to a sulfenic acid in the structure of the Paraoxon-inhibited W197I variant (PDB 3C6B). The structural snap-shot captured an unstable reversibly oxidized state, but it remained unclear as to whether the oxidation occurred before, during, or after the reaction with the organophosphate inhibitor. To determine if the oxidation of Cys-60 was functionally linked to ester hydrolysis, we used kinetic analysis and site-directed mutagenesis in combination with X-ray crystallography. The essential nature of Cys-60 for oxidation is demonstrated by the C60S variant, which is not inhibited by peroxide in the presence or absence of substrate. In the presence of substrate, the rate of inhibition of the WT SFGH by peroxide increases 14-fold, suggesting uncompetitive behavior linking oxidation to ester hydrolysis. Here we found one variant, H160I, which is activated by peroxide. This variant is activated at comparable rates in the presence or absence of substrate, indicating that the conserved His-160 is involved in the inhibitory mechanism linking ester hydrolysis to the oxidation of Cys-60. Copper chloride inhibition experiments show that at least two metal ions bind and inhibit both WT and H160I. A structure of the Paraoxon-inhibited W197I variant soaked with CuCl(2) shows density for one metal ion per monomer at the N-terminus, and density around the Cys-60 sulfur consistent with a sulfinic acid, Cys-SO(2). A Dali structural similarity search uncovered two other enzymes (Bacillus subtilis RsbQ, 1WOM and Clostridium acetobutylicum Lipase-esterase, 3E0X) that contain a similar Cys adjacent to a catalytic triad. We speculate that the regulatory motif uncovered is conserved in some D-type esterases and discuss its structural similarities in the active site of human protective protein (HPP; also known as Cathepsin A).
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1118 chromosome. These regions encompass 34 genes involved in key wine fermentation functions. Phylogeny and synteny analyses showed that 1 of these regions originated from a species closely related to the Saccharomyces genus, whereas the 2 other regions were of non-Saccharomyces origin. We identified Zygosaccharomyces bailii, a major contaminant of wine fermentations, as the donor species for 1 of these 2 regions. Although natural hybridization between Saccharomyces strains has been described, this report provides evidence that gene transfer may occur between Saccharomyces and non-Saccharomyces species. We show that the regions identified are frequent and differentially distributed among S. cerevisiae clades, being found almost exclusively in wine strains, suggesting acquisition through recent transfer events. Overall, these data show that the wine yeast genome is subject to constant remodeling through the contribution of exogenous genes. Our results suggest that these processes are favored by ecologic proximity and are involved in the molecular adaptation of wine yeasts to conditions of high sugar, low nitrogen, and high ethanol concentrations.
Many industrial strains of Saccharomyces cerevisiae have been selected primarily for their ability to convert sugars into ethanol efficiently despite exposure to a variety of stresses. To begin investigation of the genetic basis of phenotypic variation in industrial strains of S. cerevisiae, we have sequenced the genome of a wine yeast, AWRI1631, and have compared this sequence with both the laboratory strain S288c and the human pathogenic isolate YJM789. AWRI1631 was found to be substantially different from S288c and YJM789, especially at the level of single-nucleotide polymorphisms, which were present, on average, every 150 bp between all three strains. In addition, there were major differences in the arrangement and number of Ty elements between the strains, as well as several regions of DNA that were specific to AWRI1631 and that were predicted to encode proteins that are unique to this industrial strain.
        
Title: Structural characterization and reversal of the natural organophosphate resistance of a D-type esterase, Saccharomyces cerevisiae S-formylglutathione hydrolase Legler PM, Kumaran D, Swaminathan S, Studier FW, Millard CB Ref: Biochemistry, 47:9592, 2008 : PubMed
Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.
We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and deadly virulence in mouse models. Here we show that the approximately 12-Mb genome of YJM789 contains approximately 60,000 SNPs and approximately 6,000 indels with respect to the reference S288c genome, leading to protein polymorphisms with a few known cases of phenotypic changes. Several ORFs are found to be unique to YJM789, some of which might have been acquired through horizontal transfer. Localized regions of high polymorphism density are scattered over the genome, in some cases spanning multiple ORFs and in others concentrated within single genes. The sequence of YJM789 contains clues to pathogenicity and spurs the development of more powerful approaches to dissecting the genetic basis of complex hereditary traits.
The availability of complete genomic sequences and technologies that allow comprehensive analysis of global expression profiles of messenger RNA have greatly expanded our ability to monitor the internal state of a cell. Yet biological systems ultimately need to be explained in terms of the activity, regulation and modification of proteins--and the ubiquitous occurrence of post-transcriptional regulation makes mRNA an imperfect proxy for such information. To facilitate global protein analyses, we have created a Saccharomyces cerevisiae fusion library where each open reading frame is tagged with a high-affinity epitope and expressed from its natural chromosomal location. Through immunodetection of the common tag, we obtain a census of proteins expressed during log-phase growth and measurements of their absolute levels. We find that about 80% of the proteome is expressed during normal growth conditions, and, using additional sequence information, we systematically identify misannotated genes. The abundance of proteins ranges from fewer than 50 to more than 10(6) molecules per cell. Many of these molecules, including essential proteins and most transcription factors, are present at levels that are not readily detectable by other proteomic techniques nor predictable by mRNA levels or codon bias measurements.
        
Title: Purification and properties of an esterase from the yeast Saccharomyces cerevisiae and identification of the encoding gene Degrassi G, Uotila L, Klima R, Venturi V Ref: Applied Environmental Microbiology, 65:3470, 1999 : PubMed
We purified an intracellular esterase that can function as an S-formylglutathione hydrolase from the yeast Saccharomyces cerevisiae. Its molecular mass was 40 kDa, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was 5.0 by isoelectric focusing. The enzyme activity was optimal at 50 degrees C and pH 7.0. The corresponding gene, YJLO68C, was identified by its N-terminal amino acid sequence and is not essential for cell viability. Null mutants have reduced esterase activities and grow slowly in the presence of formaldehyde. This enzyme may be involved in the detoxification of formaldehyde, which can be metabolized to S-formylglutathione by S. cerevisiae.
The complete nucleotide sequence of Saccharomyces cerevisiae chromosome X (745 442 bp) reveals a total of 379 open reading frames (ORFs), the coding region covering approximately 75% of the entire sequence. One hundred and eighteen ORFs (31%) correspond to genes previously identified in S. cerevisiae. All other ORFs represent novel putative yeast genes, whose function will have to be determined experimentally. However, 57 of the latter subset (another 15% of the total) encode proteins that show significant analogy to proteins of known function from yeast or other organisms. The remaining ORFs, exhibiting no significant similarity to any known sequence, amount to 54% of the total. General features of chromosome X are also reported, with emphasis on the nucleotide frequency distribution in the environment of the ATG and stop codons, the possible coding capacity of at least some of the small ORFs (<100 codons) and the significance of 46 non-canonical or unpaired nucleotides in the stems of some of the 24 tRNA genes recognized on this chromosome.
        
Title: Sequence of a 17.1 kb DNA fragment from chromosome X of Saccharomyces cerevisiae includes the mitochondrial ribosomal protein L8 Vandenbol M, Durand P, Dion C, Portetelle D, Hilger F Ref: Yeast, 11:57, 1995 : PubMed
We have sequenced a continuous segment of 17,137 bp on chromosome X. Sequence analysis of this stretch revealed 14 open reading frames (ORFs) at least 100 amino acids long. One gene, encoding the mitochondrial 60S ribosomal protein L8, had already been sequenced. Four ORF products show weak homologies with known protein sequences. The nine remaining ORF products have no homologies with sequences in data banks.