(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Saccharomycotina: NE > Saccharomycetes: NE > Saccharomycetales: NE > Saccharomycetaceae: NE > Saccharomyces: NE > Saccharomyces cerevisiae: NE
6_AlphaBeta_hydrolase : yeast-SCYNR064CSaccharomycescerevisiae SCYNR064C, yeast-ynl5Saccharomyces cerevisiae (Baker's yeast) YNL115C hypothetical 74.0 kda protein in mls1-rpc19 intergenic region, yeast-YOR084W Saccharomyces cerevisiae (Baker's yeast) Peroxisomal membrane protein LPX1 chromosome xv reading frame orf yor084w, yeast-ymc0Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). Uncharacterized protein YML020W. A85-EsteraseD-FGH : yeast-yjg8 Saccharomyces cerevisiae (Baker's yeast)) S-formylglutathione hydrolase. ABHD11-Acetyl_transferase : yeast-yg1lSaccharomyces cerevisiae (Baker's yeast) IMO32 hypothetical 38.5 kda protein in erv1-gls2 intergenic region, yeast-yg19Saccharomyces cerevisiae (Baker's yeast) EAT1 YGR015C hypothetical 37.9 kda protein in msb2-uga1 intergenic region. ABHD13-BEM46 : yeast-yn60Saccharomyces cerevisiae (Baker's yeast) hypothetical 32.3 kda protein in kre1-hxt14 intergenic region. abh_upf0017 : yeast-MCFS1Saccharomyces cerevisiae (Baker's yeast) Acyl-coenzymeA:ethanol O-acyltransferase 51.7 kda sec62-msy1 intergenic region ypl095c, yeast-MCFS2Saccharomyces cerevisiae (Baker's yeast) EHT1, MCFS2, YBR177C, YBR1239 alcohol acyl transferase (octanoyl-CoA:ethanol acyltransferase also thioesterase), yeast-ym60Saccharomyces cerevisiae (Baker's yeast) monoacylglycerol lipase YMR210W 51.4 kda protein YM8261.04 in rar1-scj1 intergenic region. Acidic_Lipase : yeast-tgl1Saccharomyces cerevisiae (Baker's yeast) triglyceride lipase-cholesterol esterase (EC 3.1.1.-) Tgl1p, yeast-YLL012WSaccharomyces cerevisiae (Baker's yeast) chromosome xii yll012w Yeh1p Steryl ester hydrolase, yeast-YLR020CSaccharomyces cerevisiae (Baker's yeast) chromosome xii ylr020c Yeh2p. AlphaBeta_hydrolase : yeast-LDH1Saccharomyces cerevisiae (Yeast) Lipid droplet hydrolase 1 chromosome II reading frame ORF YBR204c, yeast-YDL057WSaccharomyces cerevisiae (Baker's yeast) chromosome IV reading frame orf ydl057w. Arb2_domain : yeast-hda1 Saccharomyces cerevisiae (Baker's yeast); Saccharomyces cerevisiae x Saccharomyces kudriavzevii . Histone deacetylase HDA1 (only c-term Arb2 domain). Carboxypeptidase_S10 : yeast-cbpy1 Saccharomyces cerevisiae Carboxypeptidase Y, vacuolar PRC1 gene encoding preproprotein carboxypeptidase Y (CPY), yeast-kex01 Saccharomyces cerevisiae, yeast Pheromone-processing carboxypeptidase KEX1, yeast-yby9Saccharomyces cerevisiae chromosome II reading frame ORF YBR139w. CGI-58_ABHD5_ABHD4 : yeast-cld1Saccharomyces cerevisiae (Baker's yeast) YGR110W hypothetical 52.0 kda protein in clb6-shy1 intergenic region, yeast-ECM18Saccharomyces cerevisiae (Baker's yeast) (and strains YJM789; AWRI1631; Lalvin EC1118 / Prise de mousse; RM11-1a; JAY291) hypothetical 53.2 kda extracellular matrix protein 18, yeast-ict1Saccharomyces cerevisiae (Baker's yeast) chromosome XII reading frame orf ylr099c Increased copper tolerance protein 1. Dienelactone_hydrolase : yeast-AIM2Saccharomyces cerevisiae (Baker's yeast) yae9 hypothetical 27.1 kda protein in acs1-gcv3 intergenic region, yeast-dlhhSaccharomyces cerevisiae (Baker's yeast) hydrolase) (dlh). DPP4N_Peptidase_S9 : yeast-dap1Saccharomyces cerevisiae (Baker's yeast) dipeptidyl aminopeptidase (STE13 or YCI1), yeast-dap2Saccharomyces cerevisiae (Baker's yeast) yhr028c gene for dipeptidyl aminopeptidase B (DPAP B). Duf_676 : yeast-ROG1Saccharomyces cerevisiae (Baker's yeast) Putative lipase ROG1 ygo4 78.1 kda protein in tip20-mrf1 intergenic region ygl144c, yeast-YDL109CSaccharomyces cerevisiae (Baker's yeast) chromosome IV reading frame orf ydl109c, yeast-YDR444WSaccharomyces cerevisiae (Baker's yeast) d9461.29p, yeast-yo059Saccharomyces cerevisiae (Baker's yeast) Putative lipase YOR059C LPL1 chromosome xv orf yor059c YOR29-10. Duf_726 : yeast-yfd4Saccharomyces cerevisiae (Baker's yeast) (strains YJM789; RM11-1a; AWRI1631) Uncharacterized membrane protein Mil1 YFL034W. FSH1 : yeast-FSH1 Saccharomyces cerevisiae (Baker's yeast); Saccharomyces arboricola; Saccharomyces eubayanus family of serine hydrolases 1 (EC 3.1.-.-) in aap1-smf2 intergenic region, yeast-FSH2Saccharomyces cerevisiae (Baker's yeast) hypothetical 24.5 kda protein in erg8-ubp8 intergenic region, yeast-FSH3Saccharomyces cerevisiae (Baker's yeast) hypothetical dihydrofolate reductase. Homoserine_transacetylase : yeast-met2Saccharomyces cerevisiae (Baker's yeast), Saccharomyces sp., Saccharomyces paradoxus, S. uvarum, S. bayanus, S. pastorianus, S carlsbergensis, S. bayanus x S. cerevisiae, Homoserine O-trans-acetylase. Kynurenine-formamidase : yeast-YDR428C Saccharomyces cerevisiae (Baker's yeast); Saccharomyces sp. Kynurenine formamidase KFA d9461.15p. LIDHydrolase : yeast-YPR147CSaccharomyces cerevisiae (Baker's yeast) YPR147cp lipid droplet associated enzyme triacylglycerol lipase and ester hydrolase. Lipase_3 : yeast-ATG15CDS from: Saccharomyces cerevisiae (and strain YJM789) lipase involved in lipid vesicles degradation YCR068W Cytoplasm to vacuole targeting protein 17 ATG15, yeast-yj77Saccharomyces cerevisiae chromosome X reading frame ORF YJR107w. LYsophospholipase_carboxylesterase : yeast-YLR118cSaccharomyces cerevisiae Ylr118c protein and gene in chromosome XII cosmid 9233. Monoglyceridelipase_lysophospholip : yeast-mgll Saccharomyces cerevisiae (Baker's yeast) MGLL Yju3p YKL094W YKL441 Monoglyceride lipase. PC-sterol_acyltransferase : yeast-pdatSaccharomyces cerevisiae (Baker's yeast) phospholipid:diacylglycerol acyltransferase (EC 2.3.1.158) (pdat) LRO1, yeast-yj68Saccharomyces cerevisiae (Baker's yeast) (and strain AWRI1631) hypothetical 74.1 kda protein in acr1-yuh1 intergenic region. PGAP1 : yeast-BST1Saccharomyces cerevisiae (Baker's yeast), BST1, YFL025C, GPI inositol-deacylase. PPase_methylesterase_euk : yeast-ppme1Saccharomyces cerevisiae (Baker's yeast) protein phosphatase methylesterase 1 (EC 3.1.1.-) (pme-1) (yms2). Steryl_acetyl_hydrolase : yeast-SAY1Saccharomyces cerevisiae (Baker's yeast) hypothetical 48.5da prot YG5J chromosome VII. T6SS-TLE1 : yeasv-e7ltm5Saccharomyces cerevisiae (strain VIN 13) (Baker's yeast). YEL023C-like protein
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Saccharomyces cerevisiae S288c: N, E.
Saccharomyces cerevisiae YJM789: N, E.
Saccharomyces cerevisiae RM11-1a: N, E.
Saccharomyces cerevisiae AWRI1631: N, E.
Saccharomyces cerevisiae JAY291: N, E.
Saccharomyces cerevisiae EC1118: N, E.
Saccharomyces cerevisiae AWRI796: N, E.
Saccharomyces cerevisiae Lalvin QA23: N, E.
Saccharomyces cerevisiae Vin13: N, E.
Saccharomyces cerevisiae FostersO: N, E.
Saccharomyces cerevisiae FostersB: N, E.
Saccharomyces cerevisiae VL3: N, E.
Saccharomyces cerevisiae Kyokai no. 7: N, E.
Saccharomyces cerevisiae P301: N, E.
Saccharomyces cerevisiae R103: N, E.
Saccharomyces cerevisiae CEN.PK113-7D: N, E.
Saccharomyces cerevisiae R008: N, E.
Saccharomyces cerevisiae P283: N, E.
Saccharomyces cerevisiae YJM993: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKNDNKANDIIIDSVKVPDSYKPPKNPIVFCHGLSGFDKLILIPSVFHLT NLISNSIVHNMAENFMQDDEDKSDNKYTNLLEIEYWIGVKKFLQSKGCTV ITTKVPGFGSIEERAMALDAQLQKEVKKIESKDKRHSLNLIAHSMGGLDC RYLICNIKNRNYDILSLTTISTPHRGSEMADYVVDLFENLNALRVSQKIL PICFYQLTTAYMKYFNLVTPNSPKVSYFSYGCSFVPKWYNVFCTPWKIVY ERSKGCPNDGLVTINSSKWGEYRGTLKDMDHLDVINWKNKLQDDWSKFFR TTTVGEKVDILNFYLKITDDLARKGF
References
4 moreTitle: The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria Ham HJ, Rho HJ, Shin SK, Yoon HJ Ref: Journal of Biological Chemistry, 285:3005, 2010 : PubMed
The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward long-chain TAG. Importantly, mutant hemagglutinin-Tgl2p(S144A), which contains alanine 144 in place of serine 144 in the lipase consensus sequence (G/A)XSXG exhibits no such activity. Although cellular TAG hydrolysis is reduced in the tgl2 deletion mutant, overproduction of Tgl2p in this mutant leads to an increase in TAG degradation in the presence of fatty acid synthesis inhibitor cerulenin, but that of Tgl2p(S144A) does not. This result demonstrates the lipolytic function of Tgl2p in yeast. Although other yeast TAG lipases are localized to lipid particles, Tgl2p is enriched in the mitochondria. The mitochondrial fraction purified from the TGL2-overexpressing yeast shows a strong lipolytic activity, which was absent in the tgl2 deletion mutant. Therefore, we conclude that Tgl2p is a functional lipase of the yeast mitochondria. By analyzing phenotypic effects of TGL2-deficient yeast, we also find that lipolysis-competent Tgl2p is required for the viability of cells treated with antimitotic drug. The addition of oleic acid, the product of Tgl2p-catalyzed lipolysis, fully complements the antimitotic drug sensitivity of the tgl2 null mutation. Thus, we propose that the mitochondrial Tgl2p-dependent lipolysis is crucial for the survival of cells under antimitotic drug treatment.
        
Title: The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant Van Heusden GP, Nebohacova M, Overbeeke TL, Steensma HY Ref: Yeast, 14:225, 1998 : PubMed
Escherichia coli cells with a disrupted diacylglycerol kinase gene are unable to grow on media containing arbutin due to a lethal accumulation of diacylglycerol. In order to isolate genes from the yeast Saccharomyces cerevisiae involved in diacylglycerol metabolism we complemented an E. coli diacylglycerol kinase disruptant with a yeast genomic library and transformants were selected capable of growing in the presence of arbutin. Using this method, a gene (TGL2) was isolated coding for a protein resembling lipases from Pseudomonas. After expression of the TGL2 gene in E. coli, lipolytic activity towards triacylglycerols and diacylglycerols with short-chain fatty acids could be measured. Therefore, it is very likely that the TGL2 gene can complement the E. coli diacylglycerol kinase disruptant, because it encodes a protein that degrades the diacylglycerol accumulated after growth in the presence of arbutin. Disruption of the TGL2 gene in S. cerevisiae did not result in a detectable phenotype. The role of the Tgl2 protein in lipid degradation in yeast is still unclear.
        
Title: Nucleotide sequence analysis of a 32,500 bp region of the right arm of Saccharomyces cerevisiae chromosome IV Brandt P, Ramlow S, Otto B, Bloecker H Ref: Yeast, 12:85, 1996 : PubMed
We have sequenced a region containing 32.5 kb of the right arm of chromosome IV of Saccharomyces cerevisiae. Twenty open reading frames (ORFs) greater than 100 amino acids could be identified in this region. Six ORFs correspond to known yeast genes, including DOA4, UBC5 and UBC3, the gene products of which are involved in ubiquitin metabolism. UBC5 is preceded by the two tRNA genes tRNA-Arg2 and tRNA-Asp. Six genes were discovered with homologies to non-yeast genes or with homologies to other yeast ORFs. One of these could be identified as ribosomal protein gene RPS13. The putative function of eight ORFs remains unclear because comparison to different DNA or protein databases revealed no significant patterns. The sequence from cosmid 2F21 was obtained entirely by a combined subcloning and walking primer strategy, and has been deposited in the EMBL data library under Accession Number X84162.
        
4 lessTitle: The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria Ham HJ, Rho HJ, Shin SK, Yoon HJ Ref: Journal of Biological Chemistry, 285:3005, 2010 : PubMed
The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward long-chain TAG. Importantly, mutant hemagglutinin-Tgl2p(S144A), which contains alanine 144 in place of serine 144 in the lipase consensus sequence (G/A)XSXG exhibits no such activity. Although cellular TAG hydrolysis is reduced in the tgl2 deletion mutant, overproduction of Tgl2p in this mutant leads to an increase in TAG degradation in the presence of fatty acid synthesis inhibitor cerulenin, but that of Tgl2p(S144A) does not. This result demonstrates the lipolytic function of Tgl2p in yeast. Although other yeast TAG lipases are localized to lipid particles, Tgl2p is enriched in the mitochondria. The mitochondrial fraction purified from the TGL2-overexpressing yeast shows a strong lipolytic activity, which was absent in the tgl2 deletion mutant. Therefore, we conclude that Tgl2p is a functional lipase of the yeast mitochondria. By analyzing phenotypic effects of TGL2-deficient yeast, we also find that lipolysis-competent Tgl2p is required for the viability of cells treated with antimitotic drug. The addition of oleic acid, the product of Tgl2p-catalyzed lipolysis, fully complements the antimitotic drug sensitivity of the tgl2 null mutation. Thus, we propose that the mitochondrial Tgl2p-dependent lipolysis is crucial for the survival of cells under antimitotic drug treatment.
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1118 chromosome. These regions encompass 34 genes involved in key wine fermentation functions. Phylogeny and synteny analyses showed that 1 of these regions originated from a species closely related to the Saccharomyces genus, whereas the 2 other regions were of non-Saccharomyces origin. We identified Zygosaccharomyces bailii, a major contaminant of wine fermentations, as the donor species for 1 of these 2 regions. Although natural hybridization between Saccharomyces strains has been described, this report provides evidence that gene transfer may occur between Saccharomyces and non-Saccharomyces species. We show that the regions identified are frequent and differentially distributed among S. cerevisiae clades, being found almost exclusively in wine strains, suggesting acquisition through recent transfer events. Overall, these data show that the wine yeast genome is subject to constant remodeling through the contribution of exogenous genes. Our results suggest that these processes are favored by ecologic proximity and are involved in the molecular adaptation of wine yeasts to conditions of high sugar, low nitrogen, and high ethanol concentrations.
Many industrial strains of Saccharomyces cerevisiae have been selected primarily for their ability to convert sugars into ethanol efficiently despite exposure to a variety of stresses. To begin investigation of the genetic basis of phenotypic variation in industrial strains of S. cerevisiae, we have sequenced the genome of a wine yeast, AWRI1631, and have compared this sequence with both the laboratory strain S288c and the human pathogenic isolate YJM789. AWRI1631 was found to be substantially different from S288c and YJM789, especially at the level of single-nucleotide polymorphisms, which were present, on average, every 150 bp between all three strains. In addition, there were major differences in the arrangement and number of Ty elements between the strains, as well as several regions of DNA that were specific to AWRI1631 and that were predicted to encode proteins that are unique to this industrial strain.
We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and deadly virulence in mouse models. Here we show that the approximately 12-Mb genome of YJM789 contains approximately 60,000 SNPs and approximately 6,000 indels with respect to the reference S288c genome, leading to protein polymorphisms with a few known cases of phenotypic changes. Several ORFs are found to be unique to YJM789, some of which might have been acquired through horizontal transfer. Localized regions of high polymorphism density are scattered over the genome, in some cases spanning multiple ORFs and in others concentrated within single genes. The sequence of YJM789 contains clues to pathogenicity and spurs the development of more powerful approaches to dissecting the genetic basis of complex hereditary traits.
        
Title: The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant Van Heusden GP, Nebohacova M, Overbeeke TL, Steensma HY Ref: Yeast, 14:225, 1998 : PubMed
Escherichia coli cells with a disrupted diacylglycerol kinase gene are unable to grow on media containing arbutin due to a lethal accumulation of diacylglycerol. In order to isolate genes from the yeast Saccharomyces cerevisiae involved in diacylglycerol metabolism we complemented an E. coli diacylglycerol kinase disruptant with a yeast genomic library and transformants were selected capable of growing in the presence of arbutin. Using this method, a gene (TGL2) was isolated coding for a protein resembling lipases from Pseudomonas. After expression of the TGL2 gene in E. coli, lipolytic activity towards triacylglycerols and diacylglycerols with short-chain fatty acids could be measured. Therefore, it is very likely that the TGL2 gene can complement the E. coli diacylglycerol kinase disruptant, because it encodes a protein that degrades the diacylglycerol accumulated after growth in the presence of arbutin. Disruption of the TGL2 gene in S. cerevisiae did not result in a detectable phenotype. The role of the Tgl2 protein in lipid degradation in yeast is still unclear.
        
Title: Nucleotide sequence analysis of a 32,500 bp region of the right arm of Saccharomyces cerevisiae chromosome IV Brandt P, Ramlow S, Otto B, Bloecker H Ref: Yeast, 12:85, 1996 : PubMed
We have sequenced a region containing 32.5 kb of the right arm of chromosome IV of Saccharomyces cerevisiae. Twenty open reading frames (ORFs) greater than 100 amino acids could be identified in this region. Six ORFs correspond to known yeast genes, including DOA4, UBC5 and UBC3, the gene products of which are involved in ubiquitin metabolism. UBC5 is preceded by the two tRNA genes tRNA-Arg2 and tRNA-Asp. Six genes were discovered with homologies to non-yeast genes or with homologies to other yeast ORFs. One of these could be identified as ribosomal protein gene RPS13. The putative function of eight ORFs remains unclear because comparison to different DNA or protein databases revealed no significant patterns. The sequence from cosmid 2F21 was obtained entirely by a combined subcloning and walking primer strategy, and has been deposited in the EMBL data library under Accession Number X84162.