(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Saccharomycotina: NE > Saccharomycetes: NE > Saccharomycetales: NE > Phaffomycetaceae: NE > Wickerhamomyces: NE > Wickerhamomyces ciferrii: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MFATKILRNAQSIKNELPHREVVKMAYDLHKPRSTAIRNLNENHEEPILF MHGIFGSKKSYVQDSKLISSATHTPVYTIDLRNHGESAHAQPFDYATLAA DVKEFCDSHKLDKVKLVGYSLGAKVSMLTALQYPELVKSAVIIDNAPIPQ PQIQLFMKQYIKAMKTVLNEANISADDKDWKNKASAAMKRFLPNGVIRKN LLANLVNKPPKDFDSPVIDFGDGQIHFLNPIEQMEEMAVEDVTDWPTELT KDLVFEGPVKFIRGLKSPFITDEGYEAIQKHFPNNEFHDLNSSHDILDQR PTEYVKIINDFFNIHRYESAPDSTILGHKDHPQTQARRSHL
Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the discovery of a new enzyme (Eat1) from the yeast Wickerhamomyces anomalus that resulted in high ethyl acetate production when expressed in Saccharomyces cerevisiae and Escherichia coli. Purified Eat1 showed alcohol acetyltransferase activity with ethanol and acetyl-CoA. Homologs of eat1 are responsible for most ethyl acetate synthesis in known ethyl acetate-producing yeasts, including S. cerevisiae, and are only distantly related to known alcohol acetyltransferases. Eat1 is therefore proposed to compose a novel alcohol acetyltransferase family within the alpha/beta hydrolase superfamily. The discovery of this novel enzyme family is a crucial step towards the development of biobased ethyl acetate production and will also help in selecting improved S. cerevisiae brewing strains.
Wickerhamomyces ciferrii is a microorganism characterized by the production and secretion of large amounts of acetylated sphingoid bases, in particular tetraacetyl phytosphingosine. Here, we present the 15.90-Mbp draft genome sequence of W. ciferrii NRRL Y-1031 F-60-10 generated by pyrosequencing and de novo assembly. The draft genome sequence comprising 364 contigs in 150 scaffolds was annotated and covered 6,702 protein-coding sequences. This information will contribute to the metabolic engineering of this yeast to improve the yield and spectrum of acetylated sphingoid bases in biotechnological production.