(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Clostridia: NE > Thermoanaerobacterales: NE > Thermoanaerobacterales Family III. Incertae Sedis: NE > Thermoanaerobacterium: NE > Thermoanaerobacterium sp.: NE
Molecular evidence
Database
No mutation 1 structure: 3FCY: Crystal Structure of Acetyl Xylan Esterase 1 from Thermoanaerobacterium sp. JW/SL YS485 No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MGLFDMPLQKLREYTGTNPCPEDFDEYWNRALDEMRSVDPKIELKESSFQ VSFAECYDLYFTGVRGARIHAKYIKPKTEGKHPALIRFHGYSSNSGDWND KLNYVAAGFTVVAMDVRGQGGQSQDVGGVTGNTLNGHIIRGLDDDADNML FRHIFLDTAQLAGIVMNMPEVDEDRVGVMGPSQGGGLSLACAALEPRVRK VVSEYPFLSDYKRVWDLDLAKNAYQEITDYFRLFDPRHERENEVFTKLGY IDVKNLAKRIKGDVLMCVGLMDQVCPPSTVFAAYNNIQSKKDIKVYPDYG HEPMRGFGDLAMQFMLELYS
References
Title: Isolation, analysis, and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity Lorenz WW, Wiegel J Ref: Journal of Bacteriology, 179:5436, 1997 : PubMed
The genes encoding acetyl xylan esterase 1 (axe1) and a beta-xylosidase (xylB) have been cloned and sequenced from Thermoanaerobacterium sp. strain JW/SL YS485. axe1 is located 22 nucleotides 3' of the xylB sequence. The identity of axe1 was confirmed by comparison of the deduced amino acid sequence to peptide sequence analysis data from purified acetyl xylan esterase 1. The xylB gene was identified by expression cloning and by sequence homology to known beta-xylosidases. Plasmids which independently expressed either acetyl xylan esterase 1 (pAct1BK) or beta-xylosidase (pXylo-1.1) were constructed in Escherichia coli. Plasmid pXylAct-1 contained both genes joined at a unique EcoRI site and expressed both activities. Substrate specificity, pH, and temperature optima were determined for partially purified recombinant acetyl xylan esterase 1 and for crude recombinant beta-xylosidase. Similarity searches showed that the axe1 and xylB genes were homologs of the ORF-1 and xynB genes, respectively, isolated from Thermoanaerobacterium saccharolyticum. Although the deduced sequence of the axe1 product had no significant amino acid sequence similarity to any reported acetyl xylan esterase sequence, it did have strong similarity to cephalosporin C deacetylase from Bacillus subtilis. Recombinant acetyl xylan esterase 1 was found to have thermostable deacetylase activity towards a number of acetylated substrates, including cephalosporin C and 7-aminocephalosporanic acid.
        
Title: Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485 Shao W, Wiegel J Ref: Applied Environmental Microbiology, 61:729, 1995 : PubMed
Two acetyl esterases (EC 3.1.1.6) were purified to gel electrophoretic homogeneity from Thermoanaerobacterium sp. strain JW/SL-YS485, an anaerobic, thermophilic endospore former which is able to utilize various substituted xylans for growth. Both enzymes released acetic acid from chemically acetylated larch xylan. Acetyl xylan esterases I and II had molecular masses of 195 and 106 kDa, respectively, with subunits of 32 kDa (esterase I) and 26 kDa (esterase II). The isoelectric points were 4.2 and 4.3, respectively. As determined by a 2-min assay with 4-methylumbelliferyl acetate as the substrate, the optimal activity of acetyl xylan esterases I and II occurred at pH 7.0 and 80 degrees C and at pH 7.5 and 84 degrees C, respectively. Km values of 0.45 and 0.52 mM 4-methylumbelliferyl acetate were observed for acetyl xylan esterases I and II, respectively. At pH 7.0, the temperatures for the 1-h half-lives for acetyl xylan esterases I and II were 75 degrees and slightly above 100 degrees C, respectively.