(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > asterids: NE > lamiids: NE > Solanales: NE > Solanaceae: NE > Solanoideae: NE > Solaneae: NE > Solanum: NE > Solanum tuberosum: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MEKIEHKMVAVNGLNMHLAELGEGPTILFIHGFPELWYSWRHQMVYLAER GYRAVAPDLRGYGDTTGAPLNDPSKFSILHLVGDVVALLEAIAPNEEKVF VVAHDWGALIAWHLCLFRPDKVKALVNLSVHFSKRNPKMNVVEGLKAIYG EDHYISRFQVPGEIEAEFAPIGAKSVLKKILTYRDPAPFYFPKGKGLEAI PDAPVALSSWLSEEELDYYANKFEQTGFTGAVNYYRALPINWELTAPWTG AQVKVPTKFIVGEFDLVYHIPGAKEYIHNGGFKKDVPLLEEVVVLEGAAH FVSQERPHEISKHIYDFIQKF
Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis.
Engineered enzyme variants of potato epoxide hydrolase (StEH1) display varying degrees of enrichment of (2R)-3-phenylpropane-1,2-diol from racemic benzyloxirane. Curiously, the observed increase in the enantiomeric excess of the (R)-diol is not only a consequence of changes in enantioselectivity for the preferred epoxide enantiomer, but also to changes in the regioselectivity of the epoxide ring opening of (S)-benzyloxirane. In order to probe the structural origin of these differences in substrate selectivity and catalytic regiopreference, we solved the crystal structures for the evolved StEH1 variants. We used these structures as a starting point for molecular docking studies of the epoxide enantiomers into the respective active sites. Interestingly, despite the simplicity of our docking analysis, the apparent preferred binding modes appear to rationalize the experimentally determined regioselectivities. The analysis also identifies an active site residue (F33) as a potentially important interaction partner, a role that could explain the high conservation of this residue during evolution. Overall, our experimental, structural, and computational studies provide snapshots into the evolution of enantioconvergence in StEH1-catalyzed epoxide hydrolysis.
Five cDNAs encoding a putative soluble epoxide hydrolase (sEH) from potato were isolated and characterized. The cDNAs contained open reading frames encoding 36 kDa polypeptides which were highly homologous to the carboxy terminal region of mammalian sEH. When one of the cDNAs was expressed in a baculovirus system a soluble 38 kDa protein with epoxide hydrolase activity was produced. The recombinant enzyme hydrolyzed a commonly used diagnostic substrate for the soluble form of mammalian EH. Inhibitor profiles of the recombinant potato and mammalian sEH were also similar. The expression of sEH in potato was found to be regulated by both developmental and environmental signals. Levels of mRNA for sEH were higher in meristematic tissue than in mature leaves. This mRNA was also observed to accumulate on wounding and application of exogenous methyl jasmonate.
The epoxide hydrolase StEH1 catalyzes the hydrolysis of trans-methylstyrene oxide to 1-phenyl-propane-1,2-diol. The (S,S)-epoxide is exclusively transformed into the (1R,2S)-diol, while hydrolysis of the (R,R)-epoxide results in a mixture of product enantiomers. In order to understand the differences in the stereoconfigurations of the products, the reactions were studied kinetically during both the pre-steady-state and steady-state phases. A number of closely related StEH1 variants were analyzed in parallel, and the results were rationalized by structure-activity analysis using the available crystal structures of all tested enzyme variants. Finally, empirical valence-bond simulations were performed in order to provide additional insight into the observed kinetic behaviour and ratios of the diol product enantiomers. These combined data allow us to present a model for the flux through the catalyzed reactions. With the (R,R)-epoxide, ring opening may occur at either C atom and with similar energy barriers for hydrolysis, resulting in a mixture of diol enantiomer products. However, with the (S,S)-epoxide, although either epoxide C atom may react to form the covalent enzyme intermediate, only the pro-(R,S) alkylenzyme is amenable to subsequent hydrolysis. Previously contradictory observations from kinetics experiments as well as product ratios can therefore now be explained for this biocatalytically relevant enzyme.
Several different approaches are used to describe the role of protein compartments and residues in catalysis and to identify key residues suitable for the modification of the activity or selectivity of the desired enzyme. In our research, we applied a combination of molecular dynamics simulations and a water tracking approach to describe the water accessible volume of Solanum tuberosum epoxide hydrolase. Using water as a molecular probe, we were able to identify small cavities linked with the active site: (i) one made up of conserved amino acids and indispensable for the proper positioning of catalytic water and (ii) two others in which modification can potentially contribute to enzyme selectivity and activity. Additionally, we identified regions suitable for de novo tunnel design that could also modify the catalytic properties of the enzyme. The identified hot-spots extend the list of the previously targeted residues used for modification of the regioselectivity of the enzyme. Finally, we have provided an example of a simple and elegant process for the detailed description of the network of cavities and tunnels, which can be used in the planning of enzyme modifications and can be easily adapted to the study of any other protein.
Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis.
Engineered enzyme variants of potato epoxide hydrolase (StEH1) display varying degrees of enrichment of (2R)-3-phenylpropane-1,2-diol from racemic benzyloxirane. Curiously, the observed increase in the enantiomeric excess of the (R)-diol is not only a consequence of changes in enantioselectivity for the preferred epoxide enantiomer, but also to changes in the regioselectivity of the epoxide ring opening of (S)-benzyloxirane. In order to probe the structural origin of these differences in substrate selectivity and catalytic regiopreference, we solved the crystal structures for the evolved StEH1 variants. We used these structures as a starting point for molecular docking studies of the epoxide enantiomers into the respective active sites. Interestingly, despite the simplicity of our docking analysis, the apparent preferred binding modes appear to rationalize the experimentally determined regioselectivities. The analysis also identifies an active site residue (F33) as a potentially important interaction partner, a role that could explain the high conservation of this residue during evolution. Overall, our experimental, structural, and computational studies provide snapshots into the evolution of enantioconvergence in StEH1-catalyzed epoxide hydrolysis.
Potato epoxide hydrolase 1 exhibits rich enantio- and regioselectivity in the hydrolysis of a broad range of substrates. The enzyme can be engineered to increase the yield of optically pure products as a result of changes in both enantio- and regioselectivity. It is thus highly attractive in biocatalysis, particularly for the generation of enantiopure fine chemicals and pharmaceuticals. The present work aims to establish the principles underlying the activity and selectivity of the enzyme through a combined computational, structural, and kinetic study using the substrate trans-stilbene oxide as a model system. Extensive empirical valence bond simulations have been performed on the wild-type enzyme together with several experimentally characterized mutants. We are able to computationally reproduce the differences between the activities of different stereoisomers of the substrate and the effects of mutations of several active-site residues. In addition, our results indicate the involvement of a previously neglected residue, H104, which is electrostatically linked to the general base H300. We find that this residue, which is highly conserved in epoxide hydrolases and related hydrolytic enzymes, needs to be in its protonated form in order to provide charge balance in an otherwise negatively charged active site. Our data show that unless the active-site charge balance is correctly treated in simulations, it is not possible to generate a physically meaningful model for the enzyme that can accurately reproduce activity and selectivity trends. We also expand our understanding of other catalytic residues, demonstrating in particular the role of a noncanonical residue, E35, as a 'backup base' in the absence of H300. Our results provide a detailed view of the main factors driving catalysis and regioselectivity in this enzyme and identify targets for subsequent enzyme design efforts.
        
Title: Mutations in salt-bridging residues at the interface of the core and lid domains of epoxide hydrolase StEH1 affect regioselectivity, protein stability and hysteresis Lindberg D, Ahmad S, Widersten M Ref: Archives of Biochemistry & Biophysics, 495:165, 2010 : PubMed
Epoxide hydrolase, StEH1, shows hysteretic behavior in the catalyzed hydrolysis of trans-2-methylstyrene oxide (2-MeSO)(1). Linkage between protein structure dynamics and catalytic function was probed in mutant enzymes in which surface-located salt-bridging residues were substituted. Salt-bridges at the interface of the alpha/beta-hydrolase fold core and lid domains, as well as between residues in the lid domain, between Lys(179)-Asp(202), Glu(215)-Arg(41) and Arg(236)-Glu(165) were disrupted by mutations, K179Q, E215Q, R236K and R236Q. All mutants displayed enzyme activity with styrene oxide (SO) and 2-MeSO when assayed at 30 degrees C. Disruption of salt-bridges altered the rates for isomerization between distinct Michaelis complexes, with (1R,2R)-2-MeSO as substrate, presumably as a result of increased dynamics of involved protein segments. Another indication of increased flexibility was a lowered thermostability in all mutants. We propose that the alterations to regioselectivity in these mutants derive from an increased mobility in protein segments otherwise stabilized by salt bridging interactions.
        
Title: Temperature and pH dependence of enzyme-catalyzed hydrolysis of trans-methylstyrene oxide. A unifying kinetic model for observed hysteresis, cooperativity, and regioselectivity Lindberg D, de la Fuente Revenga M, Widersten M Ref: Biochemistry, 49:2297, 2010 : PubMed
The underlying enzyme kinetics behind the regioselective promiscuity shown by epoxide hydrolases toward certain epoxides has been studied. The effects of temperature and pH on regioselectivity were investigated by analyzing the stereochemistry of hydrolysis products of (1R,2R)-trans-2-methylstyrene oxide between 14-46 degrees C and pH 6.0-9.0, either catalyzed by the potato epoxide hydrolase StEH1 or in the absence of enzyme. In the enzyme-catalyzed reaction, a switch of preferred epoxide carbon that is subjected to nucleophilic attack is observed at pH values above 8. The enzyme also displays cooperativity in substrate saturation plots when assayed at temperatures < or = 30 degrees C and at intermediate pH. The cooperativity is lost at higher assay temperatures. Cooperativity can originate from a kinetic mechanism involving hysteresis and will be dependent on the relationship between k(cat) and the rate of interconversion between two different Michaelis complexes. In the case of the studied reactions, the proposed different Michaelis complexes are enzyme-substrate complexes in which the epoxide substrate is bound in different binding modes, allowing for separate pathways toward product formation. The assumption of separated, but interacting, reaction pathways is supported by that formation of the two product enantiomers also displays distinct pH dependencies of k(cat)/K(M). The thermodynamic parameters describing the differences in activation enthalpy and entropy suggest that (1) regioselectivity is primarily dictated by differences in activation entropy with positive values of both DeltaDeltaH(++) and DeltaDeltaS(++) and (2) the hysteretic behavior is linked to an interconversion between Michaelis complexes with rates increasing with temperature. From the collected data, we propose that hysteresis, regioselectivity, and, when applicable, hysteretic cooperativity are closely linked properties, explained by the kinetic mechanism earlier introduced by our group.
        
Title: Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability Thomaeus A, Naworyta A, Mowbray SL, Widersten M Ref: Protein Science, 17:1275, 2008 : PubMed
A putative proton wire in potato soluble epoxide hydrolase 1, StEH1, was identified and investigated by means of site-directed mutagenesis, steady-state kinetic measurements, temperature inactivation studies, and X-ray crystallography. The chain of hydrogen bonds includes five water molecules coordinated through backbone carbonyl oxygens of Pro(186), Leu(266), His(269), and the His(153) imidazole. The hydroxyl of Tyr(149) is also an integrated component of the chain, which leads to the hydroxyl of Tyr(154). Available data suggest that Tyr(154) functions as a final proton donor to the anionic alkylenzyme intermediate formed during catalysis. To investigate the role of the putative proton wire, mutants Y149F, H153F, and Y149F/H153F were constructed and purified. The structure of the Y149F mutant was solved by molecular replacement and refined to 2.0 A resolution. Comparison with the structure of wild-type StEH1 revealed only subtle structural differences. The hydroxyl group lost as a result of the mutation was replaced by a water molecule, thus maintaining a functioning hydrogen bond network in the proton wire. All mutants showed decreased catalytic efficiencies with the R,R-enantiomer of trans-stilbene oxide, whereas with the S,S-enantiomer, k (cat)/K (M) was similar or slightly increased compared with the wild-type reactions. k (cat) for the Y149F mutant with either TSO enantiomer was increased; thus the lowered enzyme efficiencies were due to increases in K (M). Thermal inactivation studies revealed that the mutated enzymes were more sensitive to elevated temperatures than the wild-type enzyme. Hence, structural alterations affecting the hydrogen bond chain caused increases in k (cat) but lowered thermostability.
        
Title: Implications for an ionized alkyl-enzyme intermediate during StEH1-catalyzed trans-stilbene oxide hydrolysis Elfstrom LT, Widersten M Ref: Biochemistry, 45:205, 2006 : PubMed
The catalytic mechanism of epoxide hydrolase (EC 3.3.2.3) involves acid-assisted ring opening of the oxirane during the alkylation half-reaction of hydrolysis. Two tyrosyl residues in the active site of epoxide hydrolases have been shown to contribute to the catalysis of enzyme alkylation, but their mechanism of action has not been fully described. We have investigated the involvement of the active site Tyr154 and Tyr235 during S,S-trans-stilbene oxide hydrolysis catalyzed by potato epoxide hydrolase StEH1. Tyr phenol ionizations of unliganded enzyme as well as under pre-steady-state conditions during catalysis were studied by direct absorption spectroscopy. A transient UV absorption, indicative of tyrosinate formation, was detected during the lifetime of the alkyl-enzyme intermediate. The apparent pKa of Tyr ionization was 7.3, a value more than 3 pH units below the estimated pKa of protein Tyr residues in the unliganded enzyme. In addition, the pH dependencies of microscopic kinetic rates of catalyzed S,S-trans-stilbene oxide hydrolysis were determined. The alkylation rate increased with pH and displayed a pKa value identical to that of Tyr ionization (7.3), whereas the reverse (epoxidation) reaction did not display any pH dependence. The rate of alkyl-enzyme hydrolysis was inversely dependent on tyrosinate formation, decreasing with its buildup in the active site. Since alkyl-enzyme hydrolysis is the rate-limiting step of the overall reaction, kcat displayed the same decrease with pH as the hydrolysis rate. The compiled results suggested that the role of the Tyr154/Tyr235 pair was not as ultimate proton donor to the alkoxide anion but to stabilize the negatively charged alkyl-enzyme through electrophilic catalysis via hydrogen bonding.
Epoxide hydrolases catalyze the conversion of epoxides to diols. The known functions of such enzymes include detoxification of xenobiotics, drug metabolism, synthesis of signaling compounds, and intermediary metabolism. In plants, epoxide hydrolases are thought to participate in general defense systems. In the present study, we report the first structure of a plant epoxide hydrolase, one of the four homologous enzymes found in potato. The structure was solved by molecular replacement and refined to a resolution of 1.95 A. Analysis of the structure allows a better understanding of the observed substrate specificities and activity. Further, comparisons with mammalian and fungal epoxide hydrolase structures reported earlier show the basis of differing substrate specificities in the various epoxide hydrolase subfamilies. Most plant enzymes, like the potato epoxide hydrolase, are expected to be monomers with a preference for substrates with long lipid-like substituents of the epoxide ring. The significance of these results in the context of biological roles and industrial applications is discussed.
Five cDNAs encoding a putative soluble epoxide hydrolase (sEH) from potato were isolated and characterized. The cDNAs contained open reading frames encoding 36 kDa polypeptides which were highly homologous to the carboxy terminal region of mammalian sEH. When one of the cDNAs was expressed in a baculovirus system a soluble 38 kDa protein with epoxide hydrolase activity was produced. The recombinant enzyme hydrolyzed a commonly used diagnostic substrate for the soluble form of mammalian EH. Inhibitor profiles of the recombinant potato and mammalian sEH were also similar. The expression of sEH in potato was found to be regulated by both developmental and environmental signals. Levels of mRNA for sEH were higher in meristematic tissue than in mature leaves. This mRNA was also observed to accumulate on wounding and application of exogenous methyl jasmonate.