Other strains: Rhodococcus rhodochrous (NCIMB 13064); Rhodococcus sp. (strain TDTM0003); Mycobacterium sp (strain GP1); Pseudomonas pavonaceae) encoded on plasmid. The HaloTag is Rhodococcus rhodochrous haloalkane dehalogenase, which has a genetically modified active site, which specifically binds the reactive chloroalkane linker and has an increased rate of ligand binding. HaloTagged fusion proteins can be expressed easily and allow enzymatic assays, cellular imaging, protein arrays, determination of sub-cellular localization.(HaloTag L47V, S58T, D78G, Y87F, L88M, C128F, A155T, E160K, A167V, A172T, K175M, C176G, K195N, A224E, N227D, E257K, T264A, H272N, Y273L) Some of the most recent structures of proteins with halotag are not included in ESTHER as the tag is only a tool and not analyzed as an alpha/beta hydolase: see for example 7KTS 7KTR haloalkane dehalogenase Pseudomonas pavonaceae differs only with two aa of Rhodococcus haloalkane dehalogenase. Also identical to Mycobacterium sp (same paper)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Corynebacteriales: NE > Nocardiaceae: NE > Rhodococcus: NE > Rhodococcus rhodochrous: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Rhodococcus rhodochrous J3: N, E.
Rhodococcus rhodochrous ATCC 21198: N, E.
Rhodococcus rhodochrous KG-21: N, E.
Rhodococcus sp.: N, E.
Pseudomonas pavonaceae: N, E.
Rhodococcus sp. TDTM0003: N, E.
Mycobacterium sp. GP1: N, E.
Mycobacterium sp.: N, E.
Molecular evidence
Database
No mutation 62 structures(e.g. : 1BN6, 1BN7, 1CQW... more)(less) 1BN6: Rhodococcus haloalkane dehalogenase, 1BN7: Rhodococcus haloalkane dehalogenase in complex with acetate, 1CQW: Rhodococcus Sp. Haloalcane dehalogenase cocrystal Nai, 2V9Z: Structure of the Rhodococcus haloalkane dehalogenase mutant with enhanced enantioselectivity, 3FBW: Structure of Rhodococcus rhodochrous haloalkane dehalogenase DhaA mutant C176Y, 3FWH: Structure of haloalkane dehalogenase mutant Dha15 (I135F/C176Y) from Rhodococcus rhodochrous, 3G9X: Structure of haloalkane dehalogenase DhaA14 mutant I135F from Rhodococcus rhodochrous, 3RK4: Structure of Rhodococcus rhodochrous haloalkane dehalogenase mutant DhaA31, 3SK0: Structure of Rhodococcus rhodochrous haloalkane dehalogenase DhaA mutant DhaA12, 4E46: Structure of Rhodococcus rhodochrous haloalkane dehalogenase DhaA in complex with 2-propanol, 4F5Z: Crystal structure of Rhodococcus rhodochrous haloalkane dehalogenase mutant (L95V, A172V), 4F60: Crystal structure of Rhodococcus rhodochrous haloalkane dehalogenase mutant (T148L, G171Q, A172V, C176F), 4FWB: Structure of Rhodococcus rhodochrous haloalkane dehalogenase mutant DhaA31 in complex with 1, 2, 3 - trichloropropane SUPERSEDES 3RLT, 4HZG: Structure of haloalkane dehalogenase DhaA from Rhodococcus rhodochrous, 4KAA: Crystal structure of the halotag2 protein at the resolution 2.3A, Northeast Structural Genomics Consortium (NESG) target OR150, 4KAC: X-Ray Structure of the complex HaloTag2 with HALTS. Northeast Structural Genomics Consortium (NESG) Target OR150., 4KAF: Crystal Structure of Haloalkane dehalogenase HaloTag7 at the resolution 1.5A, Northeast Structural Genomics Consortium (NESG) Target OR151, 4KAJ: X-Ray Structure of the complex of Haloalkane dehalogenase HaloTag7 with HALTS, Northeast Structural Genomics Consortium (NESG) Target OR151, 4KYV: Crystal Structure of dehalogenase HaloTag2 with HALTS at the resolution 1.8A. Northeast Structural Genomics Consortium (NESG) Target OR150, 4WCV: Haloalkane dehalogenase DhaA mutant from Rhodococcus rhodochrous (T148L+G171Q+A172V+C176G), 5FLK: Structure of haloalkane dehalogenase variant DhaA101, 5UXZ: X-ray crystal structure of Halotag (Haloalkane dehalogenase) bound to the P9 benzothiadiazole fluorogenic ligand, 5UY1: X-ray crystal structure of apo Halotag (Haloalkane dehalogenase), 5VNP: X-ray crystal structure of Halotag bound to the P1 benzoxadiazole fluorogenic ligand, 5Y2X: Crystal structure of apo-HaloTag (M175C), 5Y2Y: Crystal structure of HaloTag (M175C) complexed with dansyl-PEG2-HaloTag ligand, 6SP5: Structure of hyperstable haloalkane dehalogenase variant DhaA115, 6SP8: Structure of hyperstable haloalkane dehalogenase variant DhaA115 prepared by the 'soak-and-freeze' method under 150 bar of krypton pressure, 6TY7: Crystal structure of haloalkane dehalogenase variant DhaA115 (synthetic construct) domain-swapped dimer type-1 (combined mutations of DhaA101 DhaA112 E20S/F80R/C128F/T148L/A155P/A172I/C176F/D198W/V219W/C262L/D266F), 6U2M: Crystal structure of a HaloTag-based calcium indicator, HaloCaMP V2, bound to JF635, 6U32: Crystal structure of HaloTag bound to tetramethylrhodamine-HaloTag ligand, 6XT8: Crystal structure of haloalkane dehalogenase variant DhaA115 (synthetic construct) domain-swapped dimer type-2 (combined mutations of DhaA101 DhaA112 E20S/F80R/C128F/T148L/A155P/A172I/C176F/D198W/V219W/C262L/D266F), 6XTC: Crystal structure of haloalkane dehalogenase variant DhaA177 domain-swapped dimer type-3, 6Y7A: X-Ray structure of the Haloalkane dehalogenase HaloTag7 labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate, 6Y7B: X-Ray structure of the Haloalkane dehalogenase HaloTag7 labeled with a chloroalkane-carbopyronine fluorophore substrate, 6ZCC: X-Ray structure of the Haloalkane dehalogenase HOB (HaloTag7-based Oligonucleotide Binder) labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate, 6ZVU: X-Ray structure of the Haloalkane dehalogenase HOB HaloTag7-P174L labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate, 6ZVV: X-Ray structure of the Haloalkane dehalogenase HOB HaloTag7-P174W labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate, 6ZVW: X-Ray structure of the Haloalkane dehalogenase HOB HaloTag7-Q165H labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate, 6ZVX: X-Ray structure of the Haloalkane dehalogenase HOB HaloTag7-Q165H-P174L labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate, 6ZVY: X-Ray structure of the Haloalkane dehalogenase HOB HaloTag7-Q165H-P174R labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate, 7O3O: Structure of haloalkane dehalogenase mutant DhaA80(T148L, G171Q, A172V, C176F) from Rhodococcus rhodochrous with ionic liquid, 7O8B: Structure of haloalkane dehalogenase variant DhaA80 from Rhodococcus rhodochrous, 7OIP: WITHDRAWN HaloTag Engineering for Enhanced Fluorogenicity with a Simple Channel Dye 1, 7OIR: WITHDRAWN HaloTag Engineering for Enhanced Fluorogenicity with a Simple Channel Dye 2, 7OND: HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridine Dye, 7OO4: HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridine Dye, 7PCW: X-ray structure of Haloalkane Halotag7-M175W labeled with chloralkane-tetramethylrhodamine fluorophore substrate, 7PCX: X-ray structure of Haloalkane Halotag7-Q165W labeled with chloralkane-tetramethylrhodamine fluorophore substrate, 7WAM: Crystal structure of HaloTag complexed with VL1, 7WAN: Crystal structure of HaloTag complexed with UL2, 7ZBA: Crystal structure of HaloTag complexed with Me-TRaQ-G ligand, 7ZBB: Crystal structure of HaloTag complexed with TRaQ-G-ctrl ligand, 7ZBD: Crystal structure of HaloTag complexed with TRaQ-G ligand, 7ZIV: X-ray structure of the haloalkane dehalogenase dead variant HaloTag7-D106A bound to a chloroalkane tetramethylrhodamine fluorophore ligand (CA-TMR), 7ZIW: X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a butyltrifluoromethanesulfonamide tetramethylrhodamine ligand (TMR-T4), 7ZIX: X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a butylmethanesulfonamide tetramethylrhodamine ligand (TMR-S4), 7ZIY: X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a pentyltrifluoromethanesulfonamide tetramethylrhodamine ligand (TMR-T5), 7ZIZ: X-ray structure of the dead variant haloalkane dehalogenase HaloTag7-D106A bound to a pentanol tetramethylrhodamine ligand (TMR-Hy5), 7ZJ0: X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a pentylmethanesulfonamide tetramethylrhodamine ligand (TMR-S5), 8OE2: Structure of hyperstable haloalkane dehalogenase variant DhaA223, 8OE6: Structure of hyperstable haloalkane dehalogenase variant DhaA231 No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYLWRN IIPHVAPSHRCIAPDLIGMGKSDKPDLDYFFDDHVRYLDAFIEALGLEEV VLVIHDWGSALGFHWAKRNPERVKGIACMEFIRPIPTWDEWPEFARETFQ AFRTADVGRELIIDQNAFIEGALPKCVVRPLTEVEMDHYREPFLKPVDRE PLWRFPNELPIAGEPANIVALVEAYMNWLHQSPVPKLLFWGTPGVLIPPA EAARLAESLPNCKTVDIGPGLHYLQEDNPDLIGSEIARWLPAL
Functional imaging using fluorescent indicators has revolutionized biology, but additional sensor scaffolds are needed to access properties such as bright, far-red emission. Here, we introduce a new platform for 'chemigenetic' fluorescent indicators, utilizing the self-labeling HaloTag protein conjugated to environmentally sensitive synthetic fluorophores. We solve a crystal structure of HaloTag bound to a rhodamine dye ligand to guide engineering efforts to modulate the dye environment. We show that fusion of HaloTag with protein sensor domains that undergo conformational changes near the bound dye results in large and rapid changes in fluorescence output. This generalizable approach affords bright, far-red calcium and voltage sensors with highly tunable photophysical and chemical properties, which can reliably detect single action potentials in cultured neurons.
Ionic liquids attracted interest as green alternatives to replace conventional organic solvents in protein stability studies. They can play an important role in the stabilization of enzymes such as haloalkane dehalogenases that are used for biodegradation of warfare agents and halogenated environmental pollutants. Three-dimensional crystals of haloalkane dehalogenase variant DhaA80 (T148L+G171Q+A172V+C176F) from Rhodococcus rhodochrous NCIMB 13064 were grown and soaked with the solutions of 2-hydroxyethylammonium acetate and 1-butyl-3-methylimidazolium methyl sulfate. The objective was to study the structural basis of the interactions between the ionic liquids and the protein. The diffraction data were collected for the 1.25 A resolution for 2-hydroxyethylammonium acetate and 1.75 A resolution for 1-butyl-3-methylimidazolium methyl sulfate. The structures were used for molecular dynamics simulations to study the interactions of DhaA80 with the ionic liquids. The findings provide coherent evidence that ionic liquids strengthen both the secondary and tertiary protein structure due to extensive hydrogen bond interactions.
The self-labeling protein tags (SLPs) HaloTag7, SNAP-tag, and CLIP-tag allow the covalent labeling of fusion proteins with synthetic molecules for applications in bioimaging and biotechnology. To guide the selection of an SLP-substrate pair and provide guidelines for the design of substrates, we report a systematic and comparative study of the labeling kinetics and substrate specificities of HaloTag7, SNAP-tag, and CLIP-tag. HaloTag7 reaches almost diffusion-limited labeling rate constants with certain rhodamine substrates, which are more than 2 orders of magnitude higher than those of SNAP-tag for the corresponding substrates. SNAP-tag labeling rate constants, however, are less affected by the structure of the label than those of HaloTag7, which vary over 6 orders of magnitude for commonly employed substrates. Determining the crystal structures of HaloTag7 and SNAP-tag labeled with fluorescent substrates allowed us to rationalize their substrate preferences. We also demonstrate how these insights can be exploited to design substrates with improved labeling kinetics.
Functional imaging using fluorescent indicators has revolutionized biology, but additional sensor scaffolds are needed to access properties such as bright, far-red emission. Here, we introduce a new platform for 'chemigenetic' fluorescent indicators, utilizing the self-labeling HaloTag protein conjugated to environmentally sensitive synthetic fluorophores. We solve a crystal structure of HaloTag bound to a rhodamine dye ligand to guide engineering efforts to modulate the dye environment. We show that fusion of HaloTag with protein sensor domains that undergo conformational changes near the bound dye results in large and rapid changes in fluorescence output. This generalizable approach affords bright, far-red calcium and voltage sensors with highly tunable photophysical and chemical properties, which can reliably detect single action potentials in cultured neurons.
Ionic liquids attracted interest as green alternatives to replace conventional organic solvents in protein stability studies. They can play an important role in the stabilization of enzymes such as haloalkane dehalogenases that are used for biodegradation of warfare agents and halogenated environmental pollutants. Three-dimensional crystals of haloalkane dehalogenase variant DhaA80 (T148L+G171Q+A172V+C176F) from Rhodococcus rhodochrous NCIMB 13064 were grown and soaked with the solutions of 2-hydroxyethylammonium acetate and 1-butyl-3-methylimidazolium methyl sulfate. The objective was to study the structural basis of the interactions between the ionic liquids and the protein. The diffraction data were collected for the 1.25 A resolution for 2-hydroxyethylammonium acetate and 1.75 A resolution for 1-butyl-3-methylimidazolium methyl sulfate. The structures were used for molecular dynamics simulations to study the interactions of DhaA80 with the ionic liquids. The findings provide coherent evidence that ionic liquids strengthen both the secondary and tertiary protein structure due to extensive hydrogen bond interactions.
The self-labeling protein tags (SLPs) HaloTag7, SNAP-tag, and CLIP-tag allow the covalent labeling of fusion proteins with synthetic molecules for applications in bioimaging and biotechnology. To guide the selection of an SLP-substrate pair and provide guidelines for the design of substrates, we report a systematic and comparative study of the labeling kinetics and substrate specificities of HaloTag7, SNAP-tag, and CLIP-tag. HaloTag7 reaches almost diffusion-limited labeling rate constants with certain rhodamine substrates, which are more than 2 orders of magnitude higher than those of SNAP-tag for the corresponding substrates. SNAP-tag labeling rate constants, however, are less affected by the structure of the label than those of HaloTag7, which vary over 6 orders of magnitude for commonly employed substrates. Determining the crystal structures of HaloTag7 and SNAP-tag labeled with fluorescent substrates allowed us to rationalize their substrate preferences. We also demonstrate how these insights can be exploited to design substrates with improved labeling kinetics.
The fast turnover of membrane components through endocytosis and recycling allows precise control of the composition of the plasma membrane. Endocytic recycling can be rapid, with some molecules returning to the plasma membrane with a half time <5min. Existing methods to study these trafficking pathways utilize chemical, radioactive or fluorescent labeling of cell surface receptors in pulse-chase experiments, which require tedious washing steps and manual collection of samples. Here, we introduce a live-cell endocytic recycling assay based on a newly designed cell-impermeable fluorogenic ligand for HaloTag, Janelia Fluor 635i (JF(635)i, where i indicates impermeant), which allows real-time detection of membrane receptor recycling at steady state. We used this method to study the effect of iron depletion on transferrin receptor (TfR) recycling using the chelator desferrioxamine. We found that this perturbation significantly increases the TfR recycling rate. The high temporal resolution and simplicity of this assay provides a clear advantage over extant methods and makes it ideal for large scale cellular imaging studies. This assay can be adapted to examine other cellular kinetic parameters such as protein turnover and biosynthetic trafficking.
Computational design of protein catalysts with enhanced stabilities for use in research and enzyme technologies is a challenging task. Using force-field calculations and phylogenetic analysis, we previously designed the haloalkane dehalogenase DhaA115 which contains 11 mutations that confer upon it outstanding thermostability (T (m) = 73.5 degreesC; deltaT (m) > 23 degreesC). An understanding of the structural basis of this hyperstabilization is required in order to develop computer algorithms and predictive tools. Here, we report X-ray structures of DhaA115 at 1.55 A and 1.6 A resolutions and their molecular dynamics trajectories, which unravel the intricate network of interactions that reinforce the alphabetaalpha-sandwich architecture. Unexpectedly, mutations toward bulky aromatic amino acids at the protein surface triggered long-distance (-27 A) backbone changes due to cooperative effects. These cooperative interactions produced an unprecedented double-lock system that: (i) induced backbone changes, (ii) closed the molecular gates to the active site, (iii) reduced the volumes of the main and slot access tunnels, and (iv) occluded the active site. Despite these spatial restrictions, experimental tracing of the access tunnels using krypton derivative crystals demonstrates that transport of ligands is still effective. Our findings highlight key thermostabilization effects and provide a structural basis for designing new thermostable protein catalysts.
Alkyl halides are potentially mutagenic carcinogens. However, no efficient fluorescent sensor for alkyl halide detection in human-derived samples has been developed to date. Herein, we report a new protein-based fluorescent sensor for alkyl halides. Analysis of the HaloTag holo-crystal structure with its covalently attached ligand revealed an unexpected cavity, allowing for the design of a new fluorogenic ligand. This ligand showed the highest fluorescence response (300-fold) and fastest binding kinetics (t1/2 < 150 s) to a HaloTag mutant (M175P) protein. This protein-based sensor system was effectively used to detect alkyl halides in human serum and monitor real-time protein alkylation.
Drug-induced proteome stress that involves protein aggregation may cause adverse effects and undermine the safety profile of a drug. Safety of drugs is regularly evaluated using cytotoxicity assays that measure cell death. However, these assays provide limited insights into the presence of proteome stress in live cells. A fluorogenic protein sensor is reported to detect drug-induced proteome stress prior to cell death. An aggregation prone Halo-tag mutant (AgHalo) was evolved to sense proteome stress through its aggregation. Detection of such conformational changes was enabled by a fluorogenic ligand that fluoresces upon AgHalo forming soluble aggregates. Using 5 common anticancer drugs, we exemplified detection of differential proteome stress before any cell death was observed. Thus, this sensor can be used to evaluate drug safety in a regime that the current cytotoxicity assays cannot cover and be generally applied to detect proteome stress induced by other toxins.
        
Title: The Cation-pi Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification Liu Y, Miao K, Dunham NP, Liu H, Fares M, Boal AK, Li X, Zhang X Ref: Biochemistry, 56:1585, 2017 : PubMed
The design of fluorogenic probes for a Halo tag is highly desirable but challenging. Previous work achieved this goal by controlling the chemical switch of spirolactones upon the covalent conjugation between the Halo tag and probes or by incorporating a "channel dye" into the substrate binding tunnel of the Halo tag. In this work, we have developed a novel class of Halo-tag fluorogenic probes that are derived from solvatochromic fluorophores. The optimal probe, harboring a benzothiadiazole scaffold, exhibits a 1000-fold fluorescence enhancement upon reaction with the Halo tag. Structural, computational, and biochemical studies reveal that the benzene ring of a tryptophan residue engages in a cation-pi interaction with the dimethylamino electron-donating group of the benzothiadiazole fluorophore in its excited state. We further demonstrate using noncanonical fluorinated tryptophan that the cation-pi interaction directly contributes to the fluorogenicity of the benzothiadiazole fluorophore. Mechanistically, this interaction could contribute to the fluorogenicity by promoting the excited-state charge separation and inhibiting the twisting motion of the dimethylamino group, both leading to an enhanced fluorogenicity. Finally, we demonstrate the utility of the probe in no-wash direct imaging of Halo-tagged proteins in live cells. In addition, the fluorogenic nature of the probe enables a gel-free quantification of fusion proteins expressed in mammalian cells, an application that was not possible with previously nonfluorogenic Halo-tag probes. The unique mechanism revealed by this work suggests that incorporation of an excited-state cation-pi interaction could be a feasible strategy for enhancing the optical performance of fluorophores and fluorogenic sensors.
There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and gamma-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (DeltaTm = 24 degrees C and 21 degrees C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.
A variant of the haloalkane dehalogenase DhaA with greatly enhanced stability and tolerance of organic solvents but reduced activity was created by mutating four residues in the access tunnel. To create a stabilized enzyme with superior catalytic activity, two of the four originally modified residues were randomized. The resulting mutant F176G exhibited 10- and 32-times enhanced activity towards 1,2-dibromoethane in buffer and 40% (v/v) DMSO, respectively, while retaining high stability. Structural and molecular dynamics analyses showed that the new variant exhibited superior activity because the F176G mutation increased the radius of the tunnel's mouth and the mobility of alpha-helices lining the tunnel. The new variant's tunnel was open in 48 % of trajectories, compared to 58 % for the wild-type, but only 0.02 % for the original four-point variant. Delicate balance between activity and stability of enzymes can be manipulated by fine-tuning the diameter and dynamics of their access tunnels.
Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increased catalytic activity towards TCP. Here, the 1.31 A resolution crystal structure of substrate-free DhaA31, the 1.26 A resolution structure of DhaA31 in complex with TCP and the 1.95 A resolution structure of wild-type DhaA are reported. Crystals of the enzyme-substrate complex were successfully obtained by adding volatile TCP to the reservoir after crystallization at pH 6.5 and room temperature. Comparison of the substrate-free structure with that of the DhaA31 enzyme-substrate complex reveals that the nucleophilic Asp106 changes its conformation from an inactive to an active state during the catalytic cycle. The positions of three chloride ions found inside the active site of the enzyme indicate a possible pathway for halide release from the active site through the main tunnel. Comparison of the DhaA31 variant with wild-type DhaA revealed that the introduced substitutions reduce the volume and the solvent-accessibility of the active-site pocket.
We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its enantioselectivity remains low. Time-dependent fluorescence shifts and computer simulations revealed that dynamics and hydration at the tunnel mouth differ substantially between the redesigned and target dehalogenase.
Mutations targeting as few as four residues lining the access tunnel extended the half-life of an enzyme in 40% dimethyl sulfoxide from minutes to weeks and increased its melting temperature by 190C. Protein crystallography and molecular dynamics revealed that the tunnel residue packing is a key determinant of protein stability and the active-site accessibility for cosolvent molecules (red dots).
Small molecule control of intracellular protein levels allows temporal and dose-dependent regulation of protein function. Recently, we developed a method to degrade proteins fused to a mutant dehalogenase (HaloTag2) using small molecule hydrophobic tags (HyTs). Here, we introduce a complementary method to stabilize the same HaloTag2 fusion proteins, resulting in a unified system allowing bidirectional control of cellular protein levels in a temporal and dose-dependent manner. From a small molecule screen, we identified N-(3,5-dichloro-2-ethoxybenzyl)-2H-tetrazol-5-amine as a nanomolar HALoTag2 Stabilizer (HALTS1) that reduces the Hsp70:HaloTag2 interaction, thereby preventing HaloTag2 ubiquitination. Finally, we demonstrate the utility of the HyT/HALTS system in probing the physiological role of therapeutic targets by modulating HaloTag2-fused oncogenic H-Ras, which resulted in either the cessation (HyT) or acceleration (HALTS) of cellular transformation. In sum, we present a general platform to study protein function, whereby any protein of interest fused to HaloTag2 can be either degraded 10-fold or stabilized 5-fold using two corresponding compounds.
The use of enzymes for biocatalysis can be significantly enhanced by using organic cosolvents in the reaction mixtures. Selection of the cosolvent type and concentration range for an enzymatic reaction is challenging and requires extensive empirical testing. An understanding of protein-solvent interaction could provide a theoretical framework for rationalising the selection process. Here, the behaviour of three model enzymes (haloalkane dehalogenases) was investigated in the presence of three representative organic cosolvents (acetone, formamide, and isopropanol). Steady-state kinetics assays, molecular dynamics simulations, and time-resolved fluorescence spectroscopy were used to elucidate the molecular mechanisms of enzyme-solvent interactions. Cosolvent molecules entered the enzymes' access tunnels and active sites, enlarged their volumes with no change in overall protein structure, but surprisingly did not act as competitive inhibitors. At low concentrations, the cosolvents either enhanced catalysis by lowering K(0.5) and increasing k(cat), or caused enzyme inactivation by promoting substrate inhibition and decreasing k(cat). The induced activation and inhibition of the enzymes correlated with expansion of the active-site pockets and their occupancy by cosolvent molecules. The study demonstrates that quantitative analysis of the proportions of the access tunnels and active-sites occupied by organic solvent molecules provides the valuable information for rational selection of appropriate protein-solvent pair and effective cosolvent concentration.
An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate specificities of nine wild-type and four engineered haloalkane dehalogenases. The enzymes were characterized experimentally using a set of 30 substrates selected using statistical experimental design from a set of nearly 200 halogenated compounds. Analysis of the activity data showed that the most universally useful substrates in the assessment of haloalkane dehalogenase activity are 1-bromobutane, 1-iodopropane, 1-iodobutane, 1,2-dibromoethane and 4-bromobutanenitrile. Functional relationships among the enzymes were explored using principal component analysis. Analysis of the untransformed specific activity data revealed that the overall activity of wild-type haloalkane dehalogenases decreases in the following order: LinB~DbjA>DhlA~DhaA~DbeA~DmbA>DatA~DmbC~DrbA. After transforming the data, we were able to classify haloalkane dehalogenases into four SSGs (substrate-specificity groups). These functional groups are clearly distinct from the evolutionary subfamilies, suggesting that phylogenetic analysis cannot be used to predict the substrate specificity of individual haloalkane dehalogenases. Structural and functional comparisons of wild-type and mutant enzymes revealed that the architecture of the active site and the main access tunnel significantly influences the substrate specificity of these enzymes, but is not its only determinant. The identification of other structural determinants of the substrate specificity remains a challenge for further research on haloalkane dehalogenases.
        
Title: Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane Lahoda M, Chaloupkova R, Stsiapanava A, Damborsky J, Kuta Smatanova I Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 67:397, 2011 : PubMed
Haloalkane dehalogenases hydrolyze carbon-halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure-function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 A for DhaA31 and to 1.26 A for DhaA31 complexed with TCP.
        
Title: Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands Stsiapanava A, Chaloupkova R, Fortova A, Brynda J, Weiss MS, Damborsky J, Smatanova IK Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 67:253, 2011 : PubMed
Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 A resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 A resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 A, respectively.
The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 is a bacterial enzyme that shows catalytic activity for the hydrolytic degradation of the highly toxic industrial pollutant 1,2,3-trichloropropane (TCP). Mutagenesis focused on the access tunnels of DhaA produced protein variants with significantly improved activity towards TCP. Three mutants of DhaA named DhaA04 (C176Y), DhaA14 (I135F) and DhaA15 (C176Y + I135F) were constructed in order to study the functional relevance of the tunnels connecting the buried active site of the protein with the surrounding solvent. All three protein variants were crystallized using the sitting-drop vapour-diffusion technique. The crystals of DhaA04 belonged to the orthorhombic space group P2(1)2(1)2(1), while the crystals of DhaA14 and DhaA15 had triclinic symmetry in space group P1. The crystal structures of DhaA04, DhaA14 and DhaA15 with ligands present in the active site were solved and refined using diffraction data to 1.23, 0.95 and 1.22 A, resolution, respectively. Structural comparisons of the wild type and the three mutants suggest that the tunnels play a key role in the processes of ligand exchange between the buried active site and the surrounding solvent.
Eight mutants of the DhaA haloalkane dehalogenase carrying mutations at the residues lining two tunnels, previously observed by protein X-ray crystallography, were constructed and biochemically characterized. The mutants showed distinct catalytic efficiencies with the halogenated substrate 1,2,3-trichloropropane. Release pathways for the two dehalogenation products, 2,3-dichloropropane-1-ol and the chloride ion, and exchange pathways for water molecules, were studied using classical and random acceleration molecular dynamics simulations. Five different pathways, denoted p1, p2a, p2b, p2c, and p3, were identified. The individual pathways showed differing selectivity for the products: the chloride ion releases solely through p1, whereas the alcohol releases through all five pathways. Water molecules play a crucial role for release of both products by breakage of their hydrogen-bonding interactions with the active-site residues and shielding the charged chloride ion during its passage through a hydrophobic tunnel. Exchange of the chloride ions, the alcohol product, and the waters between the buried active site and the bulk solvent can be realized by three different mechanisms: (i) passage through a permanent tunnel, (ii) passage through a transient tunnel, and (iii) migration through a protein matrix. We demonstrate that the accessibility of the pathways and the mechanisms of ligand exchange were modified by mutations. Insertion of bulky aromatic residues in the tunnel corresponding to pathway p1 leads to reduced accessibility to the ligands and a change in mechanism of opening from permanent to transient. We propose that engineering the accessibility of tunnels and the mechanisms of ligand exchange is a powerful strategy for modification of the functional properties of enzymes with buried active sites.
        
Title: Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis Stsiapanava A, Koudelakova T, Lapkouski M, Pavlova M, Damborsky J, Smatanova IK Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 64:137, 2008 : PubMed
The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P2(1)2(1)2(1), while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 A, respectively.
        
Title: Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene Bosma T, Damborsky J, Stucki G, Janssen DB Ref: Applied Environmental Microbiology, 68:3582, 2002 : PubMed
Using a combined strategy of random mutagenesis of haloalkane dehalogenase and genetic engineering of a chloropropanol-utilizing bacterium, we constructed an organism that is capable of growth on 1,2,3-trichloropropane (TCP). This highly toxic and recalcitrant compound is a waste product generated from the manufacture of the industrial chemical epichlorohydrin. Attempts to select and enrich bacterial cultures that can degrade TCP from environmental samples have repeatedly been unsuccessful, prohibiting the development of a biological process for groundwater treatment. The critical step in the aerobic degradation of TCP is the initial dehalogenation to 2,3-dichloro-1-propanol. We used random mutagenesis and screening on eosin-methylene blue agar plates to improve the activity on TCP of the haloalkane dehalogenase from Rhodococcus sp. m15-3 (DhaA). A second-generation mutant containing two amino acid substitutions, Cys176Tyr and Tyr273Phe, was nearly eight times more efficient in dehalogenating TCP than wild-type dehalogenase. Molecular modeling of the mutant dehalogenase indicated that the Cys176Tyr mutation has a global effect on the active-site structure, allowing a more productive binding of TCP within the active site, which was further fine tuned by Tyr273Phe. The evolved haloalkane dehalogenase was expressed under control of a constitutive promoter in the 2,3-dichloro-1-propanol-utilizing bacterium Agrobacterium radiobacter AD1, and the resulting strain was able to utilize TCP as the sole carbon and energy source. These results demonstrated that directed evolution of a key catabolic enzyme and its subsequent recruitment by a suitable host organism can be used for the construction of bacteria for the degradation of a toxic and environmentally recalcitrant chemical.
The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct bacteria and an analysis of their flanking sequences. The dhaA gene of the 1-chlorobutane-degrading strain NCIMB13064 was found to reside within a 1-chlorobutane catabolic gene cluster, which also encodes a putative invertase (invA), a regulatory protein (dhaR), an alcohol dehydrogenase (adhA), and an aldehyde dehydrogenase (aldA). The latter two enzymes may catalyze the oxidative conversion of n-butanol, the hydrolytic product of 1-chlorobutane, to n-butyric acid, a growth substrate for many bacteria. The activity of the dhaR gene product was analyzed in Pseudomonas sp. strain GJ1, in which it appeared to function as a repressor of dhaA expression. The 1,2-dibromoethane-degrading strain GP1 contained a conserved DNA segment of 2.7 kb, which included dhaR, dhaA, and part of invA. A 12-nucleotide deletion in dhaR led to constitutive expression of dhaA in strain GP1, in contrast to the inducible expression of dhaA in strain NCIMB13064. The 1, 3-dichloropropene-degrading strain 170 possessed a conserved DNA segment of 1.3 kb harboring little more than the coding region of the dhaA gene. In strains 170 and GP1, a putative integrase gene was found next to the conserved dhaA segment, which suggests that integration events were responsible for the acquisition of these DNA segments. The data indicate that horizontal gene transfer and integrase-dependent gene acquisition were the key mechanisms for the evolution of catabolic pathways for the man-made chemicals 1, 3-dichloropropene and 1,2-dibromoethane.
The hydrolytic haloalkane dehalogenases are promising bioremediation and biocatalytic agents. Two general classes of dehalogenases have been reported from Xanthobacter and Rhodococcus. While these enzymes share 30% amino acid sequence identity, they have significantly different substrate specificities and halide-binding properties. We report the 1.5 A resolution crystal structure of the Rhodococcus dehalogenase at pH 5.5, pH 7.0, and pH 5.5 in the presence of NaI. The Rhodococcus and Xanthobacter enzymes have significant structural homology in the alpha/beta hydrolase core, but differ considerably in the cap domain. Consistent with its broad specificity for primary, secondary, and cyclic haloalkanes, the Rhodococcus enzyme has a substantially larger active site cavity. Significantly, the Rhodococcus dehalogenase has a different catalytic triad topology than the Xanthobacter enzyme. In the Xanthobacter dehalogenase, the third carboxylate functionality in the triad is provided by D260, which is positioned on the loop between beta7 and the penultimate helix. The carboxylate functionality in the Rhodococcus catalytic triad is donated from E141. A model of the enzyme cocrystallized with sodium iodide shows two iodide binding sites; one that defines the normal substrate and product-binding site and a second within the active site region. In the substrate and product complexes, the halogen binds to the Xanthobacter enzyme via hydrogen bonds with the N(eta)H of both W125 and W175. The Rhodococcusenzyme does not have a tryptophan analogous to W175. Instead, bound halide is stabilized with hydrogen bonds to the N(eta)H of W118 and to N(delta)H of N52. It appears that when cocrystallized with NaI the Rhodococcus enzyme has a rare stable S-I covalent bond to S(gamma) of C187.
The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1, 3-dichloropropene, could utilize low concentrations of 1, 3-dichloropropene as a sole carbon and energy source. Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chloroacrylic acid, and several 1-halo-n-alkanes. This organism produced at least three different dehalogenases: a hydrolytic haloalkane dehalogenase specific for haloalkanes and two 3-chloroacrylic acid dehalogenases, one specific for cis-3-chloroacrylic acid and the other specific for trans-3-chloroacrylic acid. The haloalkane dehalogenase and the trans-3-chloroacrylic acid dehalogenase were expressed constitutively, whereas the cis-3-chloroacrylic acid dehalogenase was inducible. The presence of these enzymes indicates that 1, 3-dichloropropene is hydrolyzed to 3-chloroallyl alcohol, which is oxidized in two steps to 3-chloroacrylic acid. The latter compound is then dehalogenated, probably forming malonic acid semialdehyde. The haloalkane dehalogenase gene, which is involved in the conversion of 1,3-dichloropropene to 3-chloroallyl alcohol, was cloned and sequenced, and this gene turned out to be identical to the previously studied dhaA gene of the gram-positive bacterium Rhodococcus rhodochrous NCIMB13064. Mutants resistant to the suicide substrate 1,2-dibromoethane lacked haloalkane dehalogenase activity and therefore could not utilize haloalkanes for growth. PCR analysis showed that these mutants had lost at least part of the dhaA gene.
        
Title: The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064 Kulakova AN, Larkin MJ, Kulakov LA Ref: Microbiology, 143 ( Pt 1):109, 1997 : PubMed
The haloalkane dehalogenase (dhaA) gene from Rhodococcus rhodochrous NCIMB 13064 was cloned and sequenced. Its comparison with the previously studied dhlA gene from Xanthobacter autotrophicus GJ10 did not show homology. However, the amino acid sequences of the products of these genes showed approximately 30% identity and several of the catalytic amino acid residues were conserved in the NCIMB 13,064 dehalogenase. A high level of dhaA expression was demonstrated in Escherichia coli cells and this gene was shown to encode a dehalogenase with the activity against chloroalkanes of chain length C3-C10. Also, some dehalogenase activity against 1,2-dichloroethane encoded by the cloned dhaA gene was detected. The analysis of NCIMB 13,064 derivatives lacking dehalogenase activity showed that the dhaA gene was located on the 100 kbp pRTL1 plasmid. It was also found that reversible rearrangements of DNA in the dhaA region may be responsible for the control of expression of haloalkane dehalogenase in R. rhodochrous NCIMB 13064. A number of repeated and inverted sequences which may cause genetic instability at the locus were found in the haloalkane dehalogenase gene region.
The bacterium Rhodococcus rhodochrous NCIMB 13064, isolated from an industrial site, could use a wide range of 1-haloalkanes as sole carbon source but apparently utilized several different mechanisms simultaneously for assimilation of substrate. Catabolism of 1-chlorobutane occurred mainly by attack at the C-1 atom by a hydrolytic dehalogenase with the formation of butanol which was metabolized via butyric acid. The detection of small amounts of gamma-butyrolactone in the medium suggested that some oxygenase attack at C-4 also occurred, leading to the formation of 4-chlorobutyric acid which subsequently lactonized chemically to gamma-butyrolactone. Although 1-chlorobutane-grown cells exhibited little dehalogenase activity on 1-chloroalkanes with chain lengths above C10, the organism utilized such compounds as growth substrates with the release of chloride. Concomitantly, gamma-butyrolactone accumulated to 1 mM in the culture medium with 1-chlorohexadecane as substrate. Traces of 4-hydroxybutyric acid were also detected. It is suggested that attack on the long-chain chloroalkane is initiated by an oxygenase at the non-halogenated end of the molecule leading to the formation of an omega-chlorofatty acid. This is degraded by beta-oxidation to 4-chlorobutyric acid which is chemically lactonized to gamma-butyrolactone which is only slowly further catabolized via 4-hydroxybutyric acid and succinic acid. However, release of chloride into the medium during growth on long-chain chloroalkanes was insufficient to account for all the halogen present in the substrate. Analysis of the fatty acid composition of 1-chlorohexadecane-grown cells indicated that chlorofatty acids comprised 75% of the total fatty acid content with C14:0, C16:0, C16:1 and C18:1 acids predominating. Thus the incorporation of 16-chlorohexadecanoic acid, the product of oxygenase attack directly into cellular lipid represents a third route of chloroalkane assimilation. This pathway accounts at least in part for the incomplete mineralization of long-chain chloroalkane substrates. This is the first report of the coexistence of a dehalogenase and the ability to incorporate long-chain haloalkanes into the lipid fraction within a single organism and raises important questions regarding the biological treatment of haloalkane containing effluents.