(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Pseudomonadales: NE > Pseudomonadaceae: NE > Pseudomonas: NE > Pseudomonas syringae group: NE > Pseudomonas syringae group genomosp. 1: NE > Pseudomonas syringae: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Pseudomonas syringae pv. tomato T1: N, E.
Pseudomonas syringae pv. tomato: N, E.
Pseudomonas syringae pv. tomato str. DC3000: N, E.
Pseudomonas syringae pv. actinidiae: N, E.
Pseudomonas syringae pv. actinidiae ICMP 18807: N, E.
Pseudomonas syringae pv. actinidiae ICMP 9617: N, E.
Pseudomonas syringae pv. actinidiae ICMP 18804: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19104: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19102: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19101: N, E.
Pseudomonas syringae pv. actinidiae ICMP 18886: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19103: N, E.
Pseudomonas syringae pv. actinidiae ICMP 18801: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19071: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19073: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19097: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19100: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19099: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19096: N, E.
Pseudomonas syringae pv. actinidiae str. M302091: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19079: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19068: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19072: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19070: N, E.
Pseudomonas syringae pv. actinidiae ICMP 18883: N, E.
Pseudomonas syringae pv. actinidiae ICMP 9855: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19095: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19094: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19098: N, E.
Pseudomonas syringae pv. actinidiae ICMP 18884: N, E.
Pseudomonas syringae pv. actinidiae ICMP 19497: N, E.
Pseudomonas syringae pv. morsprunorum str. M302280: N, E.
Pseudomonas syringae pv. lachrymans str. M302278: N, E.
Molecular evidence
Database
No mutation 1 structure: 7A6G: Structure of L-proline amide hydrolase from Pseudomonas syringae No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MADMADMTIKEGFAPFGDYQTWYRITGDLRGGGTPLVILHGGPGCTHDYV DSFKDIANTGRAVIHYDQLGNGKSTHLPDMGSEFWTVDLFLSELDNLLEY LEIADDYALLGQSWGGMLASEHAVLQPTGLQALIIANSPADMHTWVSEAN RLREELPDDVQATLLKHEEAGTLTDPAYLTASRVFYDRHVCRITPWPVEV ERTFHQIDEDPTVYRAMNGPTEFHVIGTMKDWSIVDRLSNINVPTLVISG FYDEATPLVIQPYVDNIPDVRQSVFQESSHMPHVEERMACMGRVADFLDE VATSGKALPGVKARFG
DNA fragments containing argK-tox clusters and their flanking regions were cloned from the chromosomes of Pseudomonas syringae pathovar (pv.) actinidiae strain KW-11 (ACT) and P. syringae pv. phaseolicola strain MAFF 302282 (PHA), and then their sequences were determined. Comparative analysis of these sequences and the sequences of P. syringae pv. tomato DC3000 (TOM) (Buell et al., Proc Natl Acad Sci USA 100:10181-10186, 2003) and pv. syringae B728a (SYR) (Feil et al., Proc Natl Acad Sci USA 102:11064-11069, 2005) revealed that the chromosomal backbone regions of ACT and TOM shared a high similarity to each other but presented a low similarity to those of PHA and SYR. Nevertheless, almost-identical DNA regions of about 38 kb were confirmed to be present on the chromosomes of both ACT and PHA, which we named "tox islands." The facts that the GC content of such tox islands was 6% lower than that of the chromosomal backbone regions of P. syringae, and that argK-tox clusters, which are considered to be of exogenous origin based on our previous studies (Sawada et al., J Mol Evol 54:437-457, 2002), were confirmed to be contained within the tox islands, suggested that the tox islands were an exogenous, mobile genetic element inserted into the chromosomes of P. syringae strains. It was also predicted that the tox islands integrated site-specifically into the homologous sites of the chromosomes of ACT and PHA in the same direction, respectively, wherein 34 common gene coding sequences (CDSs) existed. Furthermore, at the left end of the tox islands were three CDSs, which encoded polypeptides and had similarities to the members of the tyrosine recombinase family, suggesting that these putative site-specific recombinases were involved in the recent horizontal transfer of tox islands.
We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.
        
Title: Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences Sawada H, Takeuchi T, Matsuda I Ref: Applied Environmental Microbiology, 63:282, 1997 : PubMed
Pseudomonas syringae pv. phaseolicola, which causes halo blight on various legumes, and pv. actinidiae, responsible for canker or leaf spot on actinidia plants, are known as phaseolotoxin producers, and the former possesses phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) which confers resistance to the toxin. We confirmed that the latter is also resistant to phaseolotoxin and possesses ROCT, and we compared the two pathovars by using sequence data of the ROCT gene and the intergenic spacer region located between the 16S and 23S rRNA genes (16S-23S spacer region) as an index. It was found that the identical ROCT gene (argK) is contained not only in bean isolates of P. syringae pv. phaseolicola in Mexico and the United States but also in bean isolates in Japan and Canada, and that it is also distributed in the kudzu (Pueraria lobata) isolates of P. syringae pv. phaseolicola. Moreover, the kiwifruit and tara vine isolates of P. syringae pv. actinidiae were also found to possess the identical argK. On the contrary, the 16S-23S spacer regions showed a significant level of sequence variation between P. syringae pv. actinidiae and pv. phaseolicola, suggesting that these two pathovars evolved differently from each other in the phylogenetic development. The fact that even synonymous substitution has not occurred in argK among these strains despite their extreme differences in phylogenetic evolution and geographical distribution suggests that it was only recently in evolutionary time that argK was transferred from its origin to P. syringae pv. actinidiae and/or pv. phaseolicola.
L-proline amide hydrolase (PAH, EC 3.5.1.101) is a barely described enzyme belonging to the peptidase S33 family, and is highly similar to prolyl aminopeptidases (PAP, EC. 3.4.11.5). Besides being an S-stereoselective character towards piperidine-based carboxamides, this enzyme also hydrolyses different L-amino acid amides, turning it into a potential biocatalyst within the Amidase Process. In this work, we report the characterization of L-proline amide hydrolase from Pseudomonas syringae (PsyPAH) together with the first X-ray structure for this class of L-amino acid amidases. Recombinant PsyPAH showed optimal conditions at pH 7.0 and 35 C, with an apparent thermal melting temperature of 46 C. The enzyme behaved as a monomer at the optimal pH. The L-enantioselective hydrolytic activity towards different canonical and non-canonical amino-acid amides was confirmed. Structural analysis suggests key residues in the enzymatic activity.
The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries--even millennia--ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species.
Diverse gene products including phytotoxins, pathogen-associated molecular patterns, and type III secreted effectors influence interactions between Pseudomonas syringae strains and plants, with additional yet uncharacterized factors likely contributing as well. Of particular interest are those interactions governing pathogen-host specificity. Comparative genomics of closely related pathogens with different host specificity represents an excellent approach for identification of genes contributing to host-range determination. A draft genome sequence of Pseudomonas syringae pv. tomato T1, which is pathogenic on tomato but nonpathogenic on Arabidopsis thaliana, was obtained for this purpose and compared with the genome of the closely related A. thaliana and tomato model pathogen P. syringae pv. tomato DC3000. Although the overall genetic content of each of the two genomes appears to be highly similar, the repertoire of effectors was found to diverge significantly. Several P. syringae pv. tomato T1 effectors absent from strain DC3000 were confirmed to be translocated into plants, with the well-studied effector AvrRpt2 representing a likely candidate for host-range determination. However, the presence of avrRpt2 was not found sufficient to explain A. thaliana resistance to P. syringae pv. tomato T1, suggesting that other effectors and possibly type III secretion system-independent factors also play a role in this interaction.
DNA fragments containing argK-tox clusters and their flanking regions were cloned from the chromosomes of Pseudomonas syringae pathovar (pv.) actinidiae strain KW-11 (ACT) and P. syringae pv. phaseolicola strain MAFF 302282 (PHA), and then their sequences were determined. Comparative analysis of these sequences and the sequences of P. syringae pv. tomato DC3000 (TOM) (Buell et al., Proc Natl Acad Sci USA 100:10181-10186, 2003) and pv. syringae B728a (SYR) (Feil et al., Proc Natl Acad Sci USA 102:11064-11069, 2005) revealed that the chromosomal backbone regions of ACT and TOM shared a high similarity to each other but presented a low similarity to those of PHA and SYR. Nevertheless, almost-identical DNA regions of about 38 kb were confirmed to be present on the chromosomes of both ACT and PHA, which we named "tox islands." The facts that the GC content of such tox islands was 6% lower than that of the chromosomal backbone regions of P. syringae, and that argK-tox clusters, which are considered to be of exogenous origin based on our previous studies (Sawada et al., J Mol Evol 54:437-457, 2002), were confirmed to be contained within the tox islands, suggested that the tox islands were an exogenous, mobile genetic element inserted into the chromosomes of P. syringae strains. It was also predicted that the tox islands integrated site-specifically into the homologous sites of the chromosomes of ACT and PHA in the same direction, respectively, wherein 34 common gene coding sequences (CDSs) existed. Furthermore, at the left end of the tox islands were three CDSs, which encoded polypeptides and had similarities to the members of the tyrosine recombinase family, suggesting that these putative site-specific recombinases were involved in the recent horizontal transfer of tox islands.
We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.
        
Title: A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes Sawada H, Kanaya S, Tsuda M, Suzuki F, Azegami K, Saitou N Ref: Journal of Molecular Evolution, 54:437, 2002 : PubMed
Phytopathogenic Pseudomonas syringae is subdivided into about 50 pathovars due to their conspicuous differentiation with regard to pathogenicity. Based on the results of a phylogenetic analysis of four genes (gyrB, rpoD, hrpL, and hrpS), Sawada et al. (1999) showed that the ancestor of P. syringae had diverged into at least three monophyletic groups during its evolution. Physical maps of the genomes of representative strains of these three groups were constructed, which revealed that each strain had five rrn operons which existed on one circular genome. The fact that the structure and size of genomes vary greatly depending on the pathovar shows that P. syringae genomes are quite rich in plasticity and that they have undergone large-scale genomic rearrangements. Analyses of the codon usage and the GC content at the codon third position, in conjunction with phylogenomic analyses, showed that the gene cluster involved in phaseolotoxin synthesis (argK-tox cluster) expanded its distribution by conducting horizontal transfer onto the genomes of two P. syringae pathovars (pv. actinidiae and pv. phaseolicola) from bacterial species distantly related to P. syringae and that its acquisition was quite recent (i.e., after the ancestor of P. syringae diverged into the respective pathovars). Furthermore, the results of a detailed analysis of argK [an anabolic ornithine carbamoyltransferase (anabolic OCTase) gene], which is present within the argK-tox cluster, revealed the plausible process of generation of an unusual composition of the OCTase genes on the genomes of these two phaseolotoxin-producing pathovars: a catabolic OCTase gene (equivalent to the orthologue of arcB of P. aeruginosa) and an anabolic OCTase gene (argF), which must have been formed by gene duplication, have first been present on the genome of the ancestor of P. syringae; the catabolic OCTase gene has been deleted; the ancestor has diverged into the respective pathovars; the foreign-originated argK-tox cluster has horizontally transferred onto the genomes of pv. actinidiae and pv. phaseolicola; and hence two copies of only the anabolic OCTase genes (argK and argF) came to exist on the genomes of these two pathovars. Thus, the horizontal gene transfer and the genomic rearrangement were proven to have played an important role in the pathogenic differentiation and diversification of P. syringae.
        
Title: Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster Sawada H, Suzuki F, Matsuda I, Saitou N Ref: Journal of Molecular Evolution, 49:627, 1999 : PubMed
Pseudomonas syringae are differentiated into approximately 50 pathovars with different plant pathogenicities and host specificities. To understand its pathogenicity differentiation and the evolutionary mechanisms of pathogenicity-related genes, phylogenetic analyses were conducted using 56 strains belonging to 19 pathovars. gyrB and rpoD were adopted as the index genes to determine the course of bacterial genome evolution, and hrpL and hrpS were selected as the representatives of the pathogenicity-related genes located on the genome (chromosome). Based on these data, NJ, MP, and ML phylogenetic trees were constructed, and thus 3 trees for each gene and 12 gene trees in total were obtained, all of which showed three distinct monophyletic groups: Groups 1, 2 and 3. The observation that the same set of OTUs constitute each group in all four genes suggests that these genes had not experienced any intergroup horizontal gene transfer within P. syringae but have been stable on and evolved along with the P. syringae genome. These four index genes were then compared with another pathogenicity-related gene, argK (the phaseolotoxin-resistant ornithine carbamoyltransferase gene, which exists within the argK-tox gene cluster). All 13 strains of pv. phaseolicola and pv. actinidiae used had been confirmed to produce phaseolotoxin and to have argK, whose sequences were completely identical, without a single synonymous substitution among the strains used (Sawada et al. 1997a). On the other hand, argK were not present on the genomes of the other 43 strains used other than pv. actinidiae and pv. phaseolicola. Thus, the productivity of phaseolotoxin and the possession of the argK gene were shown at only two points on the phylogenetic tree: Group 1 (pv. actinidiae) and Group 3 (pv. phaseolicola). A t test between these two pathovars for the synonymous distances of argK and the tandemly combined sequence of the four index genes showed a high significance, suggesting that the argK gene (or argK-tox gene cluster) experienced horizontal gene transfer and expanded its distribution over two pathovars after the pathovars had separated, thus showing a base substitution pattern extremely different from that of the noncluster region of the genome.
        
Title: Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences Sawada H, Takeuchi T, Matsuda I Ref: Applied Environmental Microbiology, 63:282, 1997 : PubMed
Pseudomonas syringae pv. phaseolicola, which causes halo blight on various legumes, and pv. actinidiae, responsible for canker or leaf spot on actinidia plants, are known as phaseolotoxin producers, and the former possesses phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) which confers resistance to the toxin. We confirmed that the latter is also resistant to phaseolotoxin and possesses ROCT, and we compared the two pathovars by using sequence data of the ROCT gene and the intergenic spacer region located between the 16S and 23S rRNA genes (16S-23S spacer region) as an index. It was found that the identical ROCT gene (argK) is contained not only in bean isolates of P. syringae pv. phaseolicola in Mexico and the United States but also in bean isolates in Japan and Canada, and that it is also distributed in the kudzu (Pueraria lobata) isolates of P. syringae pv. phaseolicola. Moreover, the kiwifruit and tara vine isolates of P. syringae pv. actinidiae were also found to possess the identical argK. On the contrary, the 16S-23S spacer regions showed a significant level of sequence variation between P. syringae pv. actinidiae and pv. phaseolicola, suggesting that these two pathovars evolved differently from each other in the phylogenetic development. The fact that even synonymous substitution has not occurred in argK among these strains despite their extreme differences in phylogenetic evolution and geographical distribution suggests that it was only recently in evolutionary time that argK was transferred from its origin to P. syringae pv. actinidiae and/or pv. phaseolicola.