Pseudomonas putida N-formylmaleamic acid deformylase, alpha/beta fold family
Comment
Conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD proteina from gene cluster (nic genes)), the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. Other strains: Pseudomonas putida (strains KT2440; W619; ND6; DOT-T1E; TRO1; S12; F1 / ATCC 700007; H8234; NBRC 14164; S13.1.2; GB-1)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Pseudomonadales: NE > Pseudomonadaceae: NE > Pseudomonas: NE > Pseudomonas putida group: NE > Pseudomonas putida: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Pseudomonas putida KT2440: N, E.
Pseudomonas putida F1: N, E.
Pseudomonas putida W619: N, E.
Pseudomonas sp. ND6: N, E.
Pseudomonas putida ND6: N, E.
Pseudomonas putida DOT-T1E: N, E.
Pseudomonas putida TRO1: N, E.
Pseudomonas putida S12: N, E.
Pseudomonas putida H8234: N, E.
Pseudomonas putida NBRC 14164: N, E.
Pseudomonas putida S13.1.2: N, E.
Pseudomonas putida GB-1: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSTFVAGGNVSANGIRQHYLRYGGKGHALILVPGITSPAITWGFVAERLG HYFDTYVLDVRGRGLSSSGPDLDYGTDACAADIPAFAAALGLDSYHLLGH SMGARFAIRAAAQGAPGLQRLVLVDPPVSGPGRRAYPSKLPWYVDSIRQA TVGMSGDDMRAFCATWSDEQLALRAEWLHTCYEPAIVRAFDDFHEVDIHQ YLPAVRQPALLMVAGRGGVIEPRDIAEMRELKPDIQVAYVDNAGHMIPWD DLDGFFAAFGDFLDHPLV
References
4 moreTitle: A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida Jimenez JI, Juarez JF, Garcia JL, Diaz E Ref: Environ Microbiol, 13:1718, 2011 : PubMed
The biochemistry of nicotinic acid (NA) degradation is known but the transcriptional control of the genes involved is still poorly studied. We report here the transcriptional regulatory circuit of the nic genes responsible for the aerobic degradation of NA in Pseudomonas putida KT2440. The three NA-inducible catabolic operons, i.e. nicAB, encoding the upper pathway that converts NA into 6-hydroxynicotinic acid (6HNA), and the nicCDEFTP and nicXR operons, responsible for channelling 6HNA to the central metabolism, are driven by the Pa, Pc and Px promoters respectively. The nicR regulatory gene encodes a MarR-like protein that represses the activity of the divergent Pc and Px promoters being 6HNA the inducer molecule. A new gene, nicS, that is associated to the nicAB genes in the genomes of different gamma- and beta-Proteobacteria, encodes a TetR-like regulator that represses the activity of Pa in the absence of the NA/6HNA inducers. The NA regulatory circuit in P. putida has evolved an additional repression loop based on the NicR-dependent cross regulation of the nicS gene, thus assuring a tight transcriptional control of the catabolic genes that may prevent depletion of this vitamin B3 when needed for the synthesis of essential cofactors.
The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
Pseudomonas putida has attracted much interest for its environmental, industrial, biotechnological, and clinical importance. Here, we report the complete genome sequence of the type strain P. putida NBRC 14164. This genome sequence will assist to further elucidate the molecular mechanisms of the characteristic traits among strains belonging to the species P. putida.
We report the complete genome sequence of Pseudomonas putida strain H8234, which was isolated from a hospital patient presenting with bacteremia. This strain has a single chromosome (6,870,827 bp) that contains 6,305 open reading frames. The strain is not a pathogen but exhibits multidrug resistance associated with 40 genomic islands.
Pseudomonas putida DOT-T1E is an organic solvent tolerant strain capable of degrading aromatic hydrocarbons. Here we report the DOT-T1E genomic sequence (6,394,153 bp) and its metabolic atlas based on the classification of enzyme activities. The genome encodes for at least 1751 enzymatic reactions that account for the known pattern of C, N, P and S utilization by this strain. Based on the potential of this strain to thrive in the presence of organic solvents and the subclasses of enzymes encoded in the genome, its metabolic map can be drawn and a number of potential biotransformation reactions can be deduced. This information may prove useful for adapting desired reactions to create value-added products. This bioengineering potential may be realized via direct transformation of substrates, or may require genetic engineering to block an existing pathway, or to re-organize operons and genes, as well as possibly requiring the recruitment of enzymes from other sources to achieve the desired transformation.
        
Title: Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6 Li S, Zhao H, Li Y, Niu S, Cai B Ref: Journal of Bacteriology, 194:5154, 2012 : PubMed
Pseudomonas putida strain ND6 is an efficient naphthalene-degrading bacterium. The complete genome of strain ND6 was sequenced and annotated. The genes encoding the enzymes involved in catechol degradation by the ortho-cleavage pathway were found in the chromosomal sequence, which indicated that strain ND6 is able to metabolize naphthalene by the catechol meta- and ortho-cleavage pathways.
        
Title: A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida Jimenez JI, Juarez JF, Garcia JL, Diaz E Ref: Environ Microbiol, 13:1718, 2011 : PubMed
The biochemistry of nicotinic acid (NA) degradation is known but the transcriptional control of the genes involved is still poorly studied. We report here the transcriptional regulatory circuit of the nic genes responsible for the aerobic degradation of NA in Pseudomonas putida KT2440. The three NA-inducible catabolic operons, i.e. nicAB, encoding the upper pathway that converts NA into 6-hydroxynicotinic acid (6HNA), and the nicCDEFTP and nicXR operons, responsible for channelling 6HNA to the central metabolism, are driven by the Pa, Pc and Px promoters respectively. The nicR regulatory gene encodes a MarR-like protein that represses the activity of the divergent Pc and Px promoters being 6HNA the inducer molecule. A new gene, nicS, that is associated to the nicAB genes in the genomes of different gamma- and beta-Proteobacteria, encodes a TetR-like regulator that represses the activity of Pa in the absence of the NA/6HNA inducers. The NA regulatory circuit in P. putida has evolved an additional repression loop based on the NicR-dependent cross regulation of the nicS gene, thus assuring a tight transcriptional control of the catabolic genes that may prevent depletion of this vitamin B3 when needed for the synthesis of essential cofactors.
The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.