(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Pseudomonadales: NE > Pseudomonadaceae: NE > Pseudomonas: NE > Pseudomonas aeruginosa group: NE > Pseudomonas aeruginosa: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Pseudomonas aeruginosa C3719: N, E.
Pseudomonas aeruginosa 2192: N, E.
Pseudomonas aeruginosa VRFPA04: N, E.
Pseudomonas aeruginosa VRFPA01: N, E.
Pseudomonas aeruginosa LESB58: N, E.
Pseudomonas aeruginosa UCBPP-PA14: N, E.
Pseudomonas aeruginosa PA7: N, E.
Pseudomonas aeruginosa 39016: N, E.
Pseudomonas aeruginosa BL12: N, E.
Pseudomonas aeruginosa PAO581: N, E.
Pseudomonas aeruginosa MPAO1/P2: N, E.
Pseudomonas aeruginosa ATCC 14886: N, E.
Pseudomonas aeruginosa BL01: N, E.
Pseudomonas aeruginosa ATCC 700888: N, E.
Pseudomonas aeruginosa ATCC 25324: N, E.
Pseudomonas aeruginosa BL16: N, E.
Pseudomonas aeruginosa BWH050: N, E.
Pseudomonas aeruginosa DHS01: N, E.
Pseudomonas aeruginosa BWHPSA005: N, E.
Pseudomonas aeruginosa BWHPSA003: N, E.
Pseudomonas aeruginosa PADK2_CF510: N, E.
Pseudomonas aeruginosa VRFPA05: N, E.
Pseudomonas aeruginosa BWHPSA028: N, E.
Pseudomonas aeruginosa M9A.1: N, E.
Pseudomonas aeruginosa PA21_ST175: N, E.
Pseudomonas aeruginosa BWHPSA046: N, E.
Pseudomonas aeruginosa UDL: N, E.
Pseudomonas aeruginosa BWHPSA027: N, E.
Pseudomonas aeruginosa 3574: N, E.
Pseudomonas aeruginosa CF127: N, E.
Pseudomonas aeruginosa PAO1-VE13: N, E.
Pseudomonas aeruginosa BWHPSA024: N, E.
Pseudomonas aeruginosa PA1: N, E.
Pseudomonas aeruginosa BWHPSA043: N, E.
Pseudomonas aeruginosa DK2: N, E.
Pseudomonas aeruginosa BL05: N, E.
Pseudomonas aeruginosa BWH035: N, E.
Pseudomonas aeruginosa VRFPA02: N, E.
Pseudomonas aeruginosa C51: N, E.
Pseudomonas aeruginosa S54485: N, E.
Pseudomonas aeruginosa BWHPSA001: N, E.
Pseudomonas aeruginosa BWHPSA019: N, E.
Pseudomonas aeruginosa BWHPSA002: N, E.
Pseudomonas aeruginosa BWHPSA038: N, E.
Pseudomonas aeruginosa BWH051: N, E.
Pseudomonas aeruginosa BWHPSA047: N, E.
Pseudomonas aeruginosa BWHPSA022: N, E.
Pseudomonas aeruginosa BL03: N, E.
Pseudomonas aeruginosa 3577: N, E.
Pseudomonas aeruginosa str. Stone 130: N, E.
Pseudomonas aeruginosa c7447m: N, E.
Pseudomonas aeruginosa BWHPSA044: N, E.
Pseudomonas aeruginosa C52: N, E.
Pseudomonas aeruginosa BL25: N, E.
Pseudomonas aeruginosa 18A: N, E.
Pseudomonas aeruginosa LESlike5: N, E.
Pseudomonas aeruginosa PAO1-VE2: N, E.
Pseudomonas aeruginosa 3576: N, E.
Pseudomonas aeruginosa 3573: N, E.
Pseudomonas aeruginosa BL17: N, E.
Pseudomonas aeruginosa U2504: N, E.
Pseudomonas aeruginosa BL24: N, E.
Pseudomonas aeruginosa CF5: N, E.
Pseudomonas aeruginosa BL22: N, E.
Pseudomonas aeruginosa BWHPSA007: N, E.
Pseudomonas aeruginosa PAO1-GFP: N, E.
Pseudomonas aeruginosa VRFPA08: N, E.
Pseudomonas aeruginosa M8A.4: N, E.
Pseudomonas aeruginosa BWHPSA015: N, E.
Pseudomonas aeruginosa S35004: N, E.
Pseudomonas aeruginosa PAO579: N, E.
Pseudomonas aeruginosa M8A.1: N, E.
Pseudomonas aeruginosa VRFPA06: N, E.
Pseudomonas aeruginosa CIG1: N, E.
Pseudomonas aeruginosa BL06: N, E.
Pseudomonas aeruginosa LESlike1: N, E.
Pseudomonas aeruginosa MSH-10: N, E.
Pseudomonas aeruginosa BL07: N, E.
Pseudomonas aeruginosa PA1R: N, E.
Pseudomonas aeruginosa M10: N, E.
Pseudomonas aeruginosa IGB83: N, E.
Pseudomonas aeruginosa BL02: N, E.
Pseudomonas aeruginosa PAO1: N, E.
Pseudomonas aeruginosa BWHPSA020: N, E.
Pseudomonas aeruginosa ID4365: N, E.
Pseudomonas aeruginosa C40: N, E.
Pseudomonas aeruginosa 19660: N, E.
Pseudomonas aeruginosa BWHPSA004: N, E.
Pseudomonas aeruginosa MTB-1: N, E.
Pseudomonas aeruginosa BWH036: N, E.
Pseudomonas aeruginosa BWHPSA010: N, E.
Pseudomonas aeruginosa LESlike7: N, E.
Pseudomonas aeruginosa 3581: N, E.
Pseudomonas aeruginosa BWH030: N, E.
Pseudomonas aeruginosa C41: N, E.
Pseudomonas aeruginosa VRFPA07: N, E.
Pseudomonas aeruginosa BWH057: N, E.
Pseudomonas aeruginosa HB13: N, E.
Pseudomonas aeruginosa BWH059: N, E.
Pseudomonas aeruginosa CF27: N, E.
Pseudomonas aeruginosa PA99: N, E.
Pseudomonas aeruginosa HB15: N, E.
Pseudomonas aeruginosa BWH049: N, E.
Pseudomonas aeruginosa LESlike4: N, E.
Pseudomonas aeruginosa CF77: N, E.
Pseudomonas aeruginosa MH27: N, E.
Pseudomonas aeruginosa SCV20265: N, E.
Pseudomonas aeruginosa BWH032: N, E.
Pseudomonas aeruginosa BWHPSA008: N, E.
Pseudomonas aeruginosa BL11: N, E.
Pseudomonas aeruginosa PA14: N, E.
Pseudomonas aeruginosa BL04: N, E.
Pseudomonas aeruginosa BWHPSA014: N, E.
Pseudomonas aeruginosa BWH053: N, E.
Pseudomonas aeruginosa BWH054: N, E.
Pseudomonas aeruginosa CF614: N, E.
Pseudomonas aeruginosa NCGM2.S1: N, E.
Pseudomonas aeruginosa MSH10: N, E.
Pseudomonas aeruginosa 3579: N, E.
Pseudomonas aeruginosa MSH3: N, E.
Pseudomonas aeruginosa C20: N, E.
Pseudomonas aeruginosa BWH058: N, E.
Pseudomonas aeruginosa Z61: N, E.
Pseudomonas aeruginosa YL84: N, E.
Pseudomonas aeruginosa BWHPSA018: N, E.
Pseudomonas aeruginosa BWH055: N, E.
Pseudomonas aeruginosa BL15: N, E.
Pseudomonas aeruginosa BWHPSA042: N, E.
Pseudomonas aeruginosa BWHPSA021: N, E.
Pseudomonas aeruginosa CF18: N, E.
Pseudomonas aeruginosa BWH033: N, E.
Pseudomonas aeruginosa 148: N, E.
Pseudomonas aeruginosa PA103: N, E.
Pseudomonas aeruginosa BL23: N, E.
Pseudomonas aeruginosa MPAO1/P1: N, E.
Pseudomonas aeruginosa 3580: N, E.
Pseudomonas aeruginosa 62: N, E.
Pseudomonas aeruginosa 6077: N, E.
Pseudomonas aeruginosa C48: N, E.
Pseudomonas aeruginosa BWHPSA041: N, E.
Pseudomonas aeruginosa BWHPSA023: N, E.
Pseudomonas aeruginosa BWHPSA045: N, E.
Pseudomonas aeruginosa BL14: N, E.
Pseudomonas aeruginosa BL08: N, E.
Pseudomonas aeruginosa BWHPSA017: N, E.
Pseudomonas aeruginosa BWHPSA039: N, E.
Pseudomonas aeruginosa DHS29: N, E.
Pseudomonas aeruginosa CI27: N, E.
Pseudomonas aeruginosa X24509: N, E.
Pseudomonas aeruginosa BWHPSA040: N, E.
Pseudomonas aeruginosa 3578: N, E.
Pseudomonas aeruginosa PS75: N, E.
Pseudomonas aeruginosa RP73: N, E.
Pseudomonas aeruginosa BWHPSA013: N, E.
Pseudomonas aeruginosa PA96: N, E.
Pseudomonas aeruginosa E2: N, E.
Pseudomonas aeruginosa BWH031: N, E.
Pseudomonas aeruginosa JJ692: N, E.
Pseudomonas aeruginosa MH38: N, E.
Pseudomonas aeruginosa B136-33: N, E.
Pseudomonas aeruginosa BWHPSA009: N, E.
Pseudomonas aeruginosa PA38182: N, E.
Pseudomonas aeruginosa WC55: N, E.
Pseudomonas aeruginosa BWHPSA026: N, E.
Pseudomonas aeruginosa X13273: N, E.
Pseudomonas aeruginosa C23: N, E.
Pseudomonas aeruginosa BL18: N, E.
Pseudomonas aeruginosa SG17M: N, E.
Pseudomonas aeruginosa PA45: N, E.
Pseudomonas aeruginosa BWH060: N, E.
Pseudomonas aeruginosa BWHPSA016: N, E.
Pseudomonas aeruginosa NCMG1179: N, E.
Pseudomonas aeruginosa BWHPSA025: N, E.
Pseudomonas aeruginosa BWH029: N, E.
Pseudomonas aeruginosa BL21: N, E.
Pseudomonas aeruginosa BL20: N, E.
Pseudomonas aeruginosa BWHPSA006: N, E.
Pseudomonas aeruginosa M18: N, E.
Pseudomonas aeruginosa BWHPSA037: N, E.
Pseudomonas aeruginosa PAK: N, E.
Pseudomonas aeruginosa BWH056: N, E.
Pseudomonas aeruginosa BL09: N, E.
Pseudomonas aeruginosa PS50: N, E.
Pseudomonas aeruginosa BWHPSA011: N, E.
Pseudomonas aeruginosa BL19: N, E.
Pseudomonas aeruginosa M8A.2: N, E.
Pseudomonas aeruginosa BWH052: N, E.
Pseudomonas aeruginosa BWHPSA012: N, E.
Pseudomonas aeruginosa LES400: N, E.
Pseudomonas aeruginosa BL10: N, E.
Pseudomonas aeruginosa VRFPA03: N, E.
Pseudomonas aeruginosa LES431: N, E.
Pseudomonas aeruginosa PS42: N, E.
Pseudomonas aeruginosa BL13: N, E.
Pseudomonas aeruginosa M8A.3: N, E.
Pseudomonas aeruginosa LESB65: N, E.
Pseudomonas aeruginosa 3575: N, E.
Pseudomonas aeruginosa DK1: N, E.
Molecular evidence
Database
No mutation 4 structures(e.g. : 6GI0, 6GI1, 6GI2... more)(less) 6GI0: Crystal structure of the ferric enterobactin esterase (pfeE) from Pseudomonas aeruginosa, 6GI1: Crystal structure of the ferric enterobactin esterase (pfeE) mutant(S157A) from Pseudomonas aeruginosa in presence of enterobactin, 6GI2: Crystal structure of the ferric enterobactin esterase (pfeE) mutant(S157A) from Pseudomonas aeruginosa in complex with Tris-catechol vector, 6GI5: Crystal structure of the ferric enterobactin esterase (PfeE) from Pseudomonas aeruginosa in complex with the tris-catechol vector No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MRTSLLVAALGLALAAALPGGAPLAQPDPEATMDRSLLQRQDLPYRFSAV DLDSVDGQRHYRLWLGRPLQAPPAAGYPVVWMLDGNAAVGALDESTLRRL ADGDAPLLVAIGYRTPLRIDRAGRTFDYTPASPGQADQRDPLNGLPSGGA DAFLDLLRDGMRPAVAAQAPLDTARQTLWGHSYGGLLVLHALFTRPGEFA RYAAASPSLWWRDGAILGERAGLEQRLRGKRAELLLWRGSAEPASPRGSL KAEPGQAMARLVDDLRRVAGLTLDFQPLDGLGHGETLGASLRLLLARPAV ERQR
Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm.
BACKGROUND: Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important opportunistic human pathogen. Generally, the acquisition of genes in the form of pathogenicity islands distinguishes pathogenic isolates from nonpathogens. We therefore sequenced a highly virulent strain of P. aeruginosa, PA14, and compared it with a previously sequenced (and less pathogenic) strain, PAO1, to identify novel virulence genes. RESULTS: The PA14 and PAO1 genomes are remarkably similar, although PA14 has a slightly larger genome (6.5 megabses [Mb]) than does PAO1 (6.3 Mb). We identified 58 PA14 gene clusters that are absent in PAO1 to determine which of these genes, if any, contribute to its enhanced virulence in a Caenorhabditis elegans pathogenicity model. First, we tested 18 additional diverse strains in the C. elegans model and observed a wide range of pathogenic potential; however, genotyping these strains using a custom microarray showed that the presence of PA14 genes that are absent in PAO1 did not correlate with the virulence of these strains. Second, we utilized a full-genome nonredundant mutant library of PA14 to identify five genes (absent in PAO1) required for C. elegans killing. Surprisingly, although these five genes are present in many other P. aeruginosa strains, they do not correlate with virulence in C. elegans. CONCLUSION: Genes required for pathogenicity in one strain of P. aeruginosa are neither required for nor predictive of virulence in other strains. We therefore propose that virulence in this organism is both multifactorial and combinatorial, the result of a pool of pathogenicity-related genes that interact in various combinations in different genetic backgrounds.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm.
Pseudomonas aeruginosa isolates have a highly conserved core genome representing up to 90% of the total genomic sequence with additional variable accessory genes, many of which are found in genomic islands or islets. The identification of the Liverpool Epidemic Strain (LES) in a children's cystic fibrosis (CF) unit in 1996 and its subsequent observation in several centers in the United Kingdom challenged the previous widespread assumption that CF patients acquire only unique strains of P. aeruginosa from the environment. To learn about the forces that shaped the development of this important epidemic strain, the genome of the earliest archived LES isolate, LESB58, was sequenced. The sequence revealed the presence of many large genomic islands, including five prophage clusters, one defective (pyocin) prophage cluster, and five non-phage islands. To determine the role of these clusters, an unbiased signature tagged mutagenesis study was performed, followed by selection in the chronic rat lung infection model. Forty-seven mutants were identified by sequencing, including mutants in several genes known to be involved in Pseudomonas infection. Furthermore, genes from four prophage clusters and one genomic island were identified and in direct competition studies with the parent isolate; four were demonstrated to strongly impact on competitiveness in the chronic rat lung infection model. This strongly indicates that enhanced in vivo competitiveness is a major driver for maintenance and diversifying selection of these genomic prophage genes.
One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis (CF) patients whose genetic disorder predisposes them to infections by this pathogen. The comparison of the genomes of the two CF strains with those of other P. aeruginosa presents a picture of a mosaic genome, consisting of a conserved core component, interrupted in each strain by combinations of specific blocks of genes. These strain-specific segments of the genome are found in limited chromosomal locations, referred to as regions of genomic plasticity. The ability of P. aeruginosa to shape its genomic composition to favor survival in the widest range of environmental reservoirs, with corresponding enhancement of its metabolic capacity is supported by the identification of a genomic island in one of the sequenced CF isolates, encoding enzymes capable of degrading terpenoids produced by trees. This work suggests that niche adaptation is a major evolutionary force influencing the composition of bacterial genomes. Unlike genome reduction seen in host-adapted bacterial pathogens, the genetic capacity of P. aeruginosa is determined by the ability of individual strains to acquire or discard genomic segments, giving rise to strains with customized genomic repertoires. Consequently, this organism can survive in a wide range of environmental reservoirs that can serve as sources of the infecting organisms.
BACKGROUND: Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important opportunistic human pathogen. Generally, the acquisition of genes in the form of pathogenicity islands distinguishes pathogenic isolates from nonpathogens. We therefore sequenced a highly virulent strain of P. aeruginosa, PA14, and compared it with a previously sequenced (and less pathogenic) strain, PAO1, to identify novel virulence genes. RESULTS: The PA14 and PAO1 genomes are remarkably similar, although PA14 has a slightly larger genome (6.5 megabses [Mb]) than does PAO1 (6.3 Mb). We identified 58 PA14 gene clusters that are absent in PAO1 to determine which of these genes, if any, contribute to its enhanced virulence in a Caenorhabditis elegans pathogenicity model. First, we tested 18 additional diverse strains in the C. elegans model and observed a wide range of pathogenic potential; however, genotyping these strains using a custom microarray showed that the presence of PA14 genes that are absent in PAO1 did not correlate with the virulence of these strains. Second, we utilized a full-genome nonredundant mutant library of PA14 to identify five genes (absent in PAO1) required for C. elegans killing. Surprisingly, although these five genes are present in many other P. aeruginosa strains, they do not correlate with virulence in C. elegans. CONCLUSION: Genes required for pathogenicity in one strain of P. aeruginosa are neither required for nor predictive of virulence in other strains. We therefore propose that virulence in this organism is both multifactorial and combinatorial, the result of a pool of pathogenicity-related genes that interact in various combinations in different genetic backgrounds.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.