(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Enterobacterales: NE > Morganellaceae: NE > Proteus: NE > Proteus mirabilis: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSTKYPIVLVHGLAGFNEIVGFPYFYGIADALRQDGHQVFTASLSAFNSN EVRGKQLWQFVQTLLQETQAKKVNFIGHSQGPLACRYVAANYPDSVASVT SINGVNHGSEIADLYRRIMRKDSIPEYIVEKVLNAFGTIISTFSGHRGDP QDAIAALESLTTEQVTEFNNKYPQALPKIPGGEGDEIVNGVHYYCFGSYI QGLIAGEKGNLLDPTHAAMRVLNTFFTEKQNDGLVGRSSMRLGKLIKDDY AQDHIDMVNQVAGLVGYNEDIVAIYTQHAKYLASKQL
References
4 moreTitle: Directed evolution of a genetically encoded immobilized lipase for the efficient production of biodiesel from waste cooking oil Heater BS, Chan WS, Lee MM, Chan MK Ref: Biotechnol Biofuels, 12:165, 2019 : PubMed
Background: We have recently developed a one-step, genetically encoded immobilization approach based on fusion of a target enzyme to the self-crystallizing protein Cry3Aa, followed by direct production and isolation of the fusion crystals from Bacillus thuringiensis. Using this approach, Bacillus subtilis lipase A was genetically fused to Cry3Aa to produce a Cry3Aa-lipA catalyst capable of the facile conversion of coconut oil into biodiesel over 10 reaction cycles. Here, we investigate the fusion of another lipase to Cry3Aa with the goal of producing a catalyst suitable for the conversion of waste cooking oil into biodiesel. Results: Genetic fusion of the Proteus mirabilis lipase (PML) to Cry3Aa allowed for the production of immobilized lipase crystals (Cry3Aa-PML) directly in bacterial cells. The fusion resulted in the loss of PML activity, however, and so taking advantage of its genetically encoded immobilization, directed evolution was performed on Cry3Aa-PML directly in its immobilized state in vivo. This novel strategy allowed for the selection of an immobilized PML mutant with 4.3-fold higher catalytic efficiency and improved stability. The resulting improved Cry3Aa-PML catalyst could be used to catalyze the conversion of waste cooking oil into biodiesel for at least 15 cycles with minimal loss in conversion efficiency. Conclusions: The genetically encoded nature of our Cry3Aa-fusion immobilization platform makes it possible to perform both directed evolution and screening of immobilized enzymes directly in vivo. This work is the first example of the use of directed evolution to optimize an enzyme in its immobilized state allowing for identification of a mutant that would unlikely have been identified from screening of its soluble form. We demonstrate that the resulting Cry3Aa-PML catalyst is suitable for the recyclable conversion of waste cooking oil into biodiesel.
BACKGROUND:
Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed trasesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially.
RESULTS:
We employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50[degree sign]C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis.
CONCLUSIONS:
Directed evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms the industrially used lipase from Burkholderia cepacia and provides a platform for still further evolution of desirable biodiesel production properties.
        
Title: Crystal Structure of Proteus mirabilis Lipase, a Novel Lipase from the Proteus/Psychrophilic Subfamily of Lipase Family I.1 Korman TP, Bowie JU Ref: PLoS ONE, 7:e52890, 2012 : PubMed
Bacterial lipases from family I.1 and I.2 catalyze the hydrolysis of triacylglycerol between 25-45 degrees C and are used extensively as biocatalysts. The lipase from Proteus mirabilis belongs to the Proteus/psychrophilic subfamily of lipase family I.1 and is a promising catalyst for biodiesel production because it can tolerate high amounts of water in the reaction. Here we present the crystal structure of the Proteus mirabilis lipase, a member of the Proteus/psychrophilic subfamily of I.1lipases. The structure of the Proteus mirabilis lipase was solved in the absence and presence of a bound phosphonate inhibitor. Unexpectedly, both the apo and inhibitor bound forms of P. mirabilis lipase were found to be in a closed conformation. The structure reveals a unique oxyanion hole and a wide active site that is solvent accessible even in the closed conformation. A distinct mechanism for Ca(2+) coordination may explain how these lipases can fold without specific chaperones.
        
4 lessTitle: Directed evolution of a genetically encoded immobilized lipase for the efficient production of biodiesel from waste cooking oil Heater BS, Chan WS, Lee MM, Chan MK Ref: Biotechnol Biofuels, 12:165, 2019 : PubMed
Background: We have recently developed a one-step, genetically encoded immobilization approach based on fusion of a target enzyme to the self-crystallizing protein Cry3Aa, followed by direct production and isolation of the fusion crystals from Bacillus thuringiensis. Using this approach, Bacillus subtilis lipase A was genetically fused to Cry3Aa to produce a Cry3Aa-lipA catalyst capable of the facile conversion of coconut oil into biodiesel over 10 reaction cycles. Here, we investigate the fusion of another lipase to Cry3Aa with the goal of producing a catalyst suitable for the conversion of waste cooking oil into biodiesel. Results: Genetic fusion of the Proteus mirabilis lipase (PML) to Cry3Aa allowed for the production of immobilized lipase crystals (Cry3Aa-PML) directly in bacterial cells. The fusion resulted in the loss of PML activity, however, and so taking advantage of its genetically encoded immobilization, directed evolution was performed on Cry3Aa-PML directly in its immobilized state in vivo. This novel strategy allowed for the selection of an immobilized PML mutant with 4.3-fold higher catalytic efficiency and improved stability. The resulting improved Cry3Aa-PML catalyst could be used to catalyze the conversion of waste cooking oil into biodiesel for at least 15 cycles with minimal loss in conversion efficiency. Conclusions: The genetically encoded nature of our Cry3Aa-fusion immobilization platform makes it possible to perform both directed evolution and screening of immobilized enzymes directly in vivo. This work is the first example of the use of directed evolution to optimize an enzyme in its immobilized state allowing for identification of a mutant that would unlikely have been identified from screening of its soluble form. We demonstrate that the resulting Cry3Aa-PML catalyst is suitable for the recyclable conversion of waste cooking oil into biodiesel.
        
Title: A method to rationally increase protein stability based on the charge-charge interaction, with application to lipase LipK107 Zhang L, Tang X, Cui D, Yao Z, Gao B, Jiang S, Yin B, Yuan YA, Wei D Ref: Protein Science, 23:110, 2014 : PubMed
We report a suite of enzyme redesign protocol based on the surface charge-charge interaction calculation, which is potentially applied to improve the stability of an enzyme without compromising its catalytic activity. Together with the experimental validation, we have released a suite of enzyme redesign algorithm Enzyme Thermal Stability System, written based on our model, for open access to meet the needs in wet labs. Lipk107, a lipase of a versatile industrial use, was chosen to test our software. Our calculation determined that four residues, D113, D149, D213, and D253, located on the surface of LipK107 were critical to the stability of the enzyme. The model was validated with mutagenesis at these four residues followed by stability and activity tests. LipK107 mutants D113A and D149K were more resistant to thermal inactivation with approximately 10 degrees C higher half-inactivation temperature than wild-type LipK107. Moreover, mutant D149K exhibited significant retention in residual activity under constant heat, showing a 14-fold increase in the half-inactivation time at 50 degrees C. Activity tests showed that these mutants retained the equal or higher specific activity, among which noteworthy was the mutant D253A with as much as 20% higher activity. We suggest that our protocol could be used as a general guideline to redesign protein enzymes with increased stabilities and enhanced activities.
        
Title: Structure, mechanism, and enantioselectivity shifting of lipase LipK107 with a simple way Zhang L, Gao B, Yuan Z, He X, Yuan YA, Zhang JZ, Wei D Ref: Biochimica & Biophysica Acta, 1844:1183, 2014 : PubMed
Because of the complex mechanisms of enzymatic reactions, no precise and simple method of understanding and controlling the chiral selectivity of enzymes has been developed. However, structure-based rational design is a powerful approach to engineering enzymes with desired catalytic activities. In this work, a simple, structure-based, large-scale in silico design and virtual screening strategy was developed and successfully applied to enzyme engineering. We first performed protein crystallization and X-ray diffraction to determine the structure of lipase LipK107, which is a novel family I.1 lipase displaying activity for both R and S isomers in chiral resolution reactions. The catalytic mechanism of family I.1, which includes LipK107, was ascertained first through comparisons of the sequences and structures of lipases from other families. The binding states of LipK107, including the energy and the conformation of complexes with the R and S enantiomers, have been evaluated by careful biocomputation to figure out the reason for the higher S selectivity. Based on this study, a simple strategy for manipulating the chiral selectivity by modulating a crucial distance in the enzyme-substrate complex and judging virtual mutations in silico is recommended. Then, a novel electrostatic interaction analysis protocol was used to design LipK107 mutants to validate our strategy. Both positive and negative mutations determined using this theoretical protocol have been implemented in wet experiments and were proved to produce the desired enantioselectivity, showing a 176% increase or 50% decrease in enantioselectivity as desired. Because of its accuracy and versatility, the strategy is promising for practical applications.
BACKGROUND:
Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed trasesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially.
RESULTS:
We employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50[degree sign]C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis.
CONCLUSIONS:
Directed evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms the industrially used lipase from Burkholderia cepacia and provides a platform for still further evolution of desirable biodiesel production properties.
        
Title: Crystal Structure of Proteus mirabilis Lipase, a Novel Lipase from the Proteus/Psychrophilic Subfamily of Lipase Family I.1 Korman TP, Bowie JU Ref: PLoS ONE, 7:e52890, 2012 : PubMed
Bacterial lipases from family I.1 and I.2 catalyze the hydrolysis of triacylglycerol between 25-45 degrees C and are used extensively as biocatalysts. The lipase from Proteus mirabilis belongs to the Proteus/psychrophilic subfamily of lipase family I.1 and is a promising catalyst for biodiesel production because it can tolerate high amounts of water in the reaction. Here we present the crystal structure of the Proteus mirabilis lipase, a member of the Proteus/psychrophilic subfamily of I.1lipases. The structure of the Proteus mirabilis lipase was solved in the absence and presence of a bound phosphonate inhibitor. Unexpectedly, both the apo and inhibitor bound forms of P. mirabilis lipase were found to be in a closed conformation. The structure reveals a unique oxyanion hole and a wide active site that is solvent accessible even in the closed conformation. A distinct mechanism for Ca(2+) coordination may explain how these lipases can fold without specific chaperones.
        
Title: Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols Xu T, Gao B, Zhang L, Lin J, Wang X, Wei D Ref: Biochimica & Biophysica Acta, 1804:2183, 2010 : PubMed
In order to fully explore the structure-function relationship of a Proteus lipase (LipK107) that was screened from the soil in our previous study, we have modeled the three-dimensional (3-D) structures of the enzyme in its active and inactive conformations on the basis of crystal structures of Burkholderia glumae and Pseudomonas aeruginosa lipases in the present study. Both homology models suggested that LipK107 possessed a catalytic triad (Ser79-Asp232-H254), an oxyanion hole (Leu13 and Gln80) which was used to stabilize the reaction tetrahedral intermediates, and a lid substructure that controlled the access of the substrate to the active site. The existence of the lid was further verified by carrying out the interfacial activation experiment. The conformational change of LipK107 which was caused by lid opening action was predicted by superimposing the two theoretical models for the first time. Finally, both 3-D structures were used to predict the enantioselectivity of LipK107 when the enzyme was used to catalyze the resolution of racemic 1-phenylethanol. Lid-open model of LipK107 identified the R-enantiomer as the preferred enantiomer, while lid-closed mode showed that the S-enantiomer was more favored. However, only the lid-open conformational model could led to predictions that agreed with the following the experimental result of real biocatalysis reaction of 1-phenylethanol.
        
Title: Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D Ref: J Biotechnol, 139:169, 2009 : PubMed
A lipase-producing bacterium K107 was isolated from soil samples of China and identified to be a strain of Proteus sp. With genome-walking method, the open reading frame of lipase gene lipK107, encoding 287 amino acids, was cloned and expressed in a heterologous host, Escherichia coli BL21 (DE3). The recombinant lipase was purified and characterized, and the optimum pH of the purified LipK107 was 9, at 35 degrees C. The recombinant E. coli expressing lipK107 was applied in biodiesel production in the form of whole-cell biocatalyst. Activity of the biocatalyst increased significantly when cells were permeabilized with 0.3% (w/v) cetyl-trimethylammoniumbromide (CTAB). This transesterification was carried out efficiently in a mixture containing 5M equivalents of methanol to the oil and 100% water by weight of the substrate. It was the first time to use E. coli whole-cell biocatalyst expressing lipase in biodiesel production, and the biodiesel reached a yield of nearly 100% after 12h reaction at the optimal temperature of 15 degrees C, which was the lowest temperature among all the known catalyst in biodiesel production.