(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Corynebacteriales: NE > Mycobacteriaceae: NE > Mycobacterium: NE > Mycobacterium tuberculosis complex: NE > Mycobacterium tuberculosis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Mycobacterium bovis BCG str. Tokyo 172: N, E.
Mycobacterium bovis BCG str. Pasteur 1173P2: N, E.
Mycobacterium bovis: N, E.
Mycobacterium bovis BCG: N, E.
Mycobacterium bovis BCG str. Mexico: N, E.
Mycobacterium bovis AN5: N, E.
Mycobacterium bovis BCG str. Korea 1168P: N, E.
Mycobacterium bovis BCG str. ATCC 35743: N, E.
Mycobacterium bovis AF2122/97: N, E.
Mycobacterium bovis 04-303: N, E.
Mycobacterium bovis BCG str. Moreau RDJ: N, E.
Mycobacterium tuberculosis TKK-01-0051: N, E.
Mycobacterium tuberculosis EAS054: N, E.
Mycobacterium tuberculosis F11: N, E.
Mycobacterium tuberculosis KZN 1435: N, E.
Mycobacterium tuberculosis H37Ra: N, E.
Mycobacterium tuberculosis T17: N, E.
Mycobacterium tuberculosis T85: N, E.
Mycobacterium tuberculosis 94_M4241A: N, E.
Mycobacterium tuberculosis 02_1987: N, E.
Mycobacterium tuberculosis T46: N, E.
Mycobacterium tuberculosis C: N, E.
Mycobacterium tuberculosis GM 1503: N, E.
Mycobacterium tuberculosis CPHL_A: N, E.
Mycobacterium tuberculosis K85: N, E.
Mycobacterium tuberculosis CDC1551: N, E.
Mycobacterium tuberculosis SUMu011: N, E.
Mycobacterium tuberculosis SUMu010: N, E.
Mycobacterium tuberculosis SUMu009: N, E.
Mycobacterium tuberculosis SUMu008: N, E.
Mycobacterium tuberculosis SUMu007: N, E.
Mycobacterium tuberculosis SUMu006: N, E.
Mycobacterium tuberculosis SUMu003: N, E.
Mycobacterium tuberculosis SUMu012: N, E.
Mycobacterium tuberculosis SUMu005: N, E.
Mycobacterium tuberculosis SUMu004: N, E.
Mycobacterium tuberculosis SUMu002: N, E.
Mycobacterium tuberculosis SUMu001: N, E.
Mycobacterium tuberculosis str. Haarlem: N, E.
Mycobacterium tuberculosis T92: N, E.
Mycobacterium tuberculosis str. Erdman = ATCC 35801: N, E.
Mycobacterium tuberculosis FJ05194: N, E.
Mycobacterium tuberculosis EAI5/NITR206: N, E.
Mycobacterium tuberculosis UT205: N, E.
Mycobacterium tuberculosis CCDC5180: N, E.
Mycobacterium tuberculosis H37Rv: N, E.
Mycobacterium tuberculosis CDC1551A: N, E.
Mycobacterium tuberculosis CCDC5079: N, E.
Mycobacterium tuberculosis BT2: N, E.
Mycobacterium tuberculosis EAI5: N, E.
Mycobacterium tuberculosis W-148: N, E.
Mycobacterium tuberculosis CTRI-2: N, E.
Mycobacterium tuberculosis RGTB327: N, E.
Mycobacterium tuberculosis str. Haarlem/NITR202: N, E.
Mycobacterium tuberculosis '98-R604 INH-RIF-EM': N, E.
Mycobacterium tuberculosis str. Beijing/NITR203: N, E.
Mycobacterium tuberculosis HKBS1: N, E.
Mycobacterium tuberculosis CAS/NITR204: N, E.
Mycobacterium tuberculosis 7199-99: N, E.
Mycobacterium tuberculosis KZN 605: N, E.
Mycobacterium tuberculosis NCGM2209: N, E.
Mycobacterium tuberculosis BT1: N, E.
Mycobacterium tuberculosis RGTB423: N, E.
Mycobacterium tuberculosis KZN 4207: N, E.
Mycobacterium tuberculosis GuangZ0019: N, E.
Mycobacterium tuberculosis 2092HD: N, E.
Mycobacterium tuberculosis variant caprae: N, E.
Mycobacterium tuberculosis variant africanum: N, E.
Mycobacterium tuberculosis variant microti OV254: N, E.
Molecular evidence
Database
No mutation 1 structure: 1R88: Structure of Mycobacterium tuberculosis MPT51 (FbpC1) No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKGRSALLRALWIAALSFGLGGVAVAAEPTAKAAPYENLMVPSPSMGRDI PVAFLAGGPHAVYLLDAFNAGPDVSNWVTAGNAMNTLAGKGISVVAPAGG AYSMYTNWEQDGSKQWDTFLSAELPDWLAANRGLAPGGHAAVGAAQGGYG AMALAAFHPDRFGFAGSMSGFLYPSNTTTNGAIAAGMQQFGGVDTNGMWG APQLGRWKWHDPWVHASLLAQNNTRVWVWSPTNPGASDPAAMIGQAAEAM GNSRMFYNQYRSVGGHNGHFDFPASGDNGWGSWAPQLGAMSGDIVGAIR
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
        
Title: Characterization of the gene encoding the MPB51, one of the major secreted protein antigens of Mycobacterium bovis BCG, and identification of the secreted protein closely related to the fibronectin binding 85 complex Ohara N, Kitaura H, Hotokezaka H, Nishiyama T, Wada N, Matsumoto S, Matsuo T, Naito M, Yamada T Ref: Scand J Immunol, 41:433, 1995 : PubMed
The secreted protein MPB51 is one of the major proteins in the culture filtrate of Mycobacterium bovis BCG (BCG) and is a protein immunologically cross-reacting with the fibronectin binding 85 complex secreted by this bacterium. The gene encoding MPB51 (mpb51) was cloned, sequenced, and expressed in Escherichia coli. The mpb51 gene was mapped downstream of the gene for 85A component with 179 bp spaces. The mpb51 gene encoded 299 amino acids, including 33 amino acids for the signal peptide, followed by 266 amino acids for the mature protein with a molecular mass of 27807.37 Da. This is the first complete sequence of MPB51. MPB51 showed 37-43% homology to the components of 85 complex. Two-dimensional electrophoresis of culture fluids of BCG and Western blotting indicated the existence of the other novel protein(s) which strongly cross-reacted with the alpha antigen (85B) and MPB51.
        
Title: A family of cross-reacting proteins secreted by Mycobacterium tuberculosis Wiker HG, Nagai S, Harboe M, Ljungqvist L Ref: Scand J Immunol, 36:307, 1992 : PubMed
Cross-reactions between five proteins actively secreted by Mycobacterium tuberculosis were studied by crossed immunoelectrophoresis, SDS-PAGE with immunoblotting, and ELISA using polyclonal rabbit antisera and mouse monoclonal antibodies to the purified proteins. The monoclonal antibody HBT4 was demonstrated to react with the MPT51 protein. The 85A, 85B and 85C constituents of the M. tuberculosis and Mycobacterium bovis BCG antigen 85 complex cross-react extensively, each of the components containing component-specific as well as cross-reacting epitopes. These components also cross-reacted with MPT51 and MPT64. N-terminal sequence studies revealed striking homology at the amino acid level between 85A, 85B, 85C and MPT51. MPT64 showed less homology. In addition, striking homology was demonstrated between two different stretches within the 85B sequence and indicated between three stretches within the MPT64 molecule. Thus, a family of at least four secreted proteins with common structural features has been demonstrated in mycobacteria. MPT64 may also belong to this family.
        
6 lessTitle: The alpha/beta Hydrolase Fold Proteins of Mycobacterium tuberculosis, With Reference to their Contribution to Virulence Johnson G Ref: Curr Protein Pept Sci, 18:190, 2016 : PubMed
The alpha/beta hydrolase fold superfamily is an ancient and widely diversified group of primarily hydrolytic enzymes. In this review, the adaptations of these proteins to the pathogenic lifestyle of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, are examined. Of the 105 alpha/beta hydrolases identified in Mtb, many are associated with lipid metabolism, particularly in the biosynthesis and maintenance of the Mtb's unique cell envelope, as well in the large number of extracellular lipases that are likely responsible for degradation of host lipid material. alpha/beta hydrolase fold proteins are also involved in the evasion and modulation of the immune response, detoxification and metabolic adaptations, including growth, response to acidification of the intracellular environment and dormancy. A striking feature of Mtb's alpha/beta hydrolases is their diversification into virulence-associated niches. It is clear that the alpha/beta hydrolase fold family has made a significant contribution to Mtb's remarkable success as a pathogen.
        
Title: Whole genome sequence analysis of Mycobacterium bovis bacillus Calmette-Guerin (BCG) Tokyo 172: a comparative study of BCG vaccine substrains Seki M, Honda I, Fujita I, Yano I, Yamamoto S, Koyama A Ref: Vaccine, 27:1710, 2009 : PubMed
To investigate the molecular characteristics of bacillus Calmette-Guerin (BCG) vaccines, the complete genomic sequence of Mycobacterium bovis BCG Tokyo 172 was determined, and the results were compared with those for BCG Pasteur and other M. tuberculosis complex. The genome of BCG Tokyo had a length of 4,371,711bp and contained 4033 genes, including 3950 genes coding for proteins (CDS). There were 18 regions of difference (showing differences of more than 20bp), 20 insertion or deletion (ins/del) mutations of less than 20bp, and 68 SNPs between the two BCG substrains. These findings are useful for better understanding of the genetic differences in BCG substrains due to in vitro evolution of BCG.
To understand the evolution, attenuation, and variable protective efficacy of bacillus Calmette-Guerin (BCG) vaccines, Mycobacterium bovis BCG Pasteur 1173P2 has been subjected to comparative genome and transcriptome analysis. The 4,374,522-bp genome contains 3,954 protein-coding genes, 58 of which are present in two copies as a result of two independent tandem duplications, DU1 and DU2. DU1 is restricted to BCG Pasteur, although four forms of DU2 exist; DU2-I is confined to early BCG vaccines, like BCG Japan, whereas DU2-III and DU2-IV occur in the late vaccines. The glycerol-3-phosphate dehydrogenase gene, glpD2, is one of only three genes common to all four DU2 variants, implying that BCG requires higher levels of this enzyme to grow on glycerol. Further amplification of the DU2 region is ongoing, even within vaccine preparations used to immunize humans. An evolutionary scheme for BCG vaccines was established by analyzing DU2 and other markers. Lesions in genes encoding sigma-factors and pleiotropic transcriptional regulators, like PhoR and Crp, were also uncovered in various BCG strains; together with gene amplification, these affect gene expression levels, immunogenicity, and, possibly, protection against tuberculosis. Furthermore, the combined findings suggest that early BCG vaccines may even be superior to the later ones that are more widely used.
        
Title: The structure of Mycobacterium tuberculosis MPT51 (FbpC1) defines a new family of non-catalytic alpha/beta hydrolases Wilson RA, Maughan WN, Kremer L, Besra GS, Futterer K Ref: Journal of Molecular Biology, 335:519, 2004 : PubMed
Mycobacterium tuberculosis, the causative agent of tuberculosis, is known to secrete a number of highly immunogenic proteins that are thought to confer pathogenicity, in part, by mediating binding to host tissues. Among these secreted proteins are the trimeric antigen 85 (Ag85) complex and the related MPT51 protein, also known as FbpC1. While the physiological function of Ag85, a mycolyltransferase required for the biosynthesis of the cell wall component alpha,alpha'-trehalose dimycolate (or cord factor), has been identified recently, the function of the closely related MPT51 (approximately 40% identity with the Ag85 components) remains to be established. The crystal structure of M.tuberculosis MPT51, determined to 1.7 A resolution, shows that MPT51, like the Ag85 components Ag85B and Ag85C2, folds as an alpha/beta hydrolase, but it does not contain any of the catalytic elements required for mycolyltransferase activity. Moreover, the absence of a recognizable alpha,alpha'-trehalose monomycolate-binding site and the failure to detect an active site suggest that the function of MPT51 is of a non-enzymatic nature and that MPT51 may in fact represent a new family of non-catalytic alpha/beta hydrolases. Previous experimental evidence and the structural similarity to some integrins and carbohydrate-binding proteins led to the hypothesis that MPT51 might have a role in host tissue attachment, whereby ligands may include the serum protein fibronectin and small sugars.
Mycobacterium bovis is the causative agent of tuberculosis in a range of animal species and man, with worldwide annual losses to agriculture of $3 billion. The human burden of tuberculosis caused by the bovine tubercle bacillus is still largely unknown. M. bovis was also the progenitor for the M. bovis bacillus Calmette-Guerin vaccine strain, the most widely used human vaccine. Here we describe the 4,345,492-bp genome sequence of M. bovis AF2122/97 and its comparison with the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. Strikingly, the genome sequence of M. bovis is >99.95% identical to that of M. tuberculosis, but deletion of genetic information has led to a reduced genome size. Comparison with M. leprae reveals a number of common gene losses, suggesting the removal of functional redundancy. Cell wall components and secreted proteins show the greatest variation, indicating their potential role in host-bacillus interactions or immune evasion. Furthermore, there are no genes unique to M. bovis, implying that differential gene expression may be the key to the host tropisms of human and bovine bacilli. The genome sequence therefore offers major insight on the evolution, host preference, and pathobiology of M. bovis.
Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
        
Title: Characterization of the gene encoding the MPB51, one of the major secreted protein antigens of Mycobacterium bovis BCG, and identification of the secreted protein closely related to the fibronectin binding 85 complex Ohara N, Kitaura H, Hotokezaka H, Nishiyama T, Wada N, Matsumoto S, Matsuo T, Naito M, Yamada T Ref: Scand J Immunol, 41:433, 1995 : PubMed
The secreted protein MPB51 is one of the major proteins in the culture filtrate of Mycobacterium bovis BCG (BCG) and is a protein immunologically cross-reacting with the fibronectin binding 85 complex secreted by this bacterium. The gene encoding MPB51 (mpb51) was cloned, sequenced, and expressed in Escherichia coli. The mpb51 gene was mapped downstream of the gene for 85A component with 179 bp spaces. The mpb51 gene encoded 299 amino acids, including 33 amino acids for the signal peptide, followed by 266 amino acids for the mature protein with a molecular mass of 27807.37 Da. This is the first complete sequence of MPB51. MPB51 showed 37-43% homology to the components of 85 complex. Two-dimensional electrophoresis of culture fluids of BCG and Western blotting indicated the existence of the other novel protein(s) which strongly cross-reacted with the alpha antigen (85B) and MPB51.
        
Title: A family of cross-reacting proteins secreted by Mycobacterium tuberculosis Wiker HG, Nagai S, Harboe M, Ljungqvist L Ref: Scand J Immunol, 36:307, 1992 : PubMed
Cross-reactions between five proteins actively secreted by Mycobacterium tuberculosis were studied by crossed immunoelectrophoresis, SDS-PAGE with immunoblotting, and ELISA using polyclonal rabbit antisera and mouse monoclonal antibodies to the purified proteins. The monoclonal antibody HBT4 was demonstrated to react with the MPT51 protein. The 85A, 85B and 85C constituents of the M. tuberculosis and Mycobacterium bovis BCG antigen 85 complex cross-react extensively, each of the components containing component-specific as well as cross-reacting epitopes. These components also cross-reacted with MPT51 and MPT64. N-terminal sequence studies revealed striking homology at the amino acid level between 85A, 85B, 85C and MPT51. MPT64 showed less homology. In addition, striking homology was demonstrated between two different stretches within the 85B sequence and indicated between three stretches within the MPT64 molecule. Thus, a family of at least four secreted proteins with common structural features has been demonstrated in mycobacteria. MPT64 may also belong to this family.