(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Corynebacteriales: NE > Mycobacteriaceae: NE > Mycobacterium: NE > Mycobacterium tuberculosis complex: NE > Mycobacterium tuberculosis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Mycobacterium bovis BCG str. Tokyo 172: N, E.
Mycobacterium bovis BCG str. Pasteur 1173P2: N, E.
Mycobacterium bovis: N, E.
Mycobacterium bovis BCG: N, E.
Mycobacterium bovis BCG str. Mexico: N, E.
Mycobacterium bovis AN5: N, E.
Mycobacterium bovis BCG str. Korea 1168P: N, E.
Mycobacterium bovis BCG str. ATCC 35743: N, E.
Mycobacterium bovis AF2122/97: N, E.
Mycobacterium bovis 04-303: N, E.
Mycobacterium bovis BCG str. Moreau RDJ: N, E.
Mycobacterium tuberculosis TKK-01-0051: N, E.
Mycobacterium tuberculosis EAS054: N, E.
Mycobacterium tuberculosis F11: N, E.
Mycobacterium tuberculosis KZN 1435: N, E.
Mycobacterium tuberculosis H37Ra: N, E.
Mycobacterium tuberculosis T17: N, E.
Mycobacterium tuberculosis T85: N, E.
Mycobacterium tuberculosis 94_M4241A: N, E.
Mycobacterium tuberculosis 02_1987: N, E.
Mycobacterium tuberculosis T46: N, E.
Mycobacterium tuberculosis C: N, E.
Mycobacterium tuberculosis GM 1503: N, E.
Mycobacterium tuberculosis CPHL_A: N, E.
Mycobacterium tuberculosis K85: N, E.
Mycobacterium tuberculosis CDC1551: N, E.
Mycobacterium tuberculosis SUMu011: N, E.
Mycobacterium tuberculosis SUMu010: N, E.
Mycobacterium tuberculosis SUMu009: N, E.
Mycobacterium tuberculosis SUMu008: N, E.
Mycobacterium tuberculosis SUMu007: N, E.
Mycobacterium tuberculosis SUMu006: N, E.
Mycobacterium tuberculosis SUMu003: N, E.
Mycobacterium tuberculosis SUMu012: N, E.
Mycobacterium tuberculosis SUMu005: N, E.
Mycobacterium tuberculosis SUMu004: N, E.
Mycobacterium tuberculosis SUMu002: N, E.
Mycobacterium tuberculosis SUMu001: N, E.
Mycobacterium tuberculosis str. Haarlem: N, E.
Mycobacterium tuberculosis T92: N, E.
Mycobacterium tuberculosis str. Erdman = ATCC 35801: N, E.
Mycobacterium tuberculosis FJ05194: N, E.
Mycobacterium tuberculosis EAI5/NITR206: N, E.
Mycobacterium tuberculosis UT205: N, E.
Mycobacterium tuberculosis CCDC5180: N, E.
Mycobacterium tuberculosis H37Rv: N, E.
Mycobacterium tuberculosis CDC1551A: N, E.
Mycobacterium tuberculosis CCDC5079: N, E.
Mycobacterium tuberculosis BT2: N, E.
Mycobacterium tuberculosis EAI5: N, E.
Mycobacterium tuberculosis W-148: N, E.
Mycobacterium tuberculosis CTRI-2: N, E.
Mycobacterium tuberculosis RGTB327: N, E.
Mycobacterium tuberculosis str. Haarlem/NITR202: N, E.
Mycobacterium tuberculosis '98-R604 INH-RIF-EM': N, E.
Mycobacterium tuberculosis str. Beijing/NITR203: N, E.
Mycobacterium tuberculosis HKBS1: N, E.
Mycobacterium tuberculosis CAS/NITR204: N, E.
Mycobacterium tuberculosis 7199-99: N, E.
Mycobacterium tuberculosis KZN 605: N, E.
Mycobacterium tuberculosis NCGM2209: N, E.
Mycobacterium tuberculosis BT1: N, E.
Mycobacterium tuberculosis RGTB423: N, E.
Mycobacterium tuberculosis KZN 4207: N, E.
Mycobacterium tuberculosis GuangZ0019: N, E.
Mycobacterium tuberculosis 2092HD: N, E.
Mycobacterium tuberculosis variant caprae: N, E.
Mycobacterium tuberculosis variant africanum: N, E.
Mycobacterium tuberculosis variant microti OV254: N, E.
Mycobacterium africanum K85: N, E.
Molecular evidence
Database
No mutation 14 structures(e.g. : 5V3W, 5V3X, 5V3Y... more)(less) 5V3W: Crystal Structure of the Apo form of Thioesterase domain of Mtb Pks13, 5V3X: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM1, 5V3Y: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM16, 5V3Z: Crystal Structure of the D1607N mutant form of Thioesterase domain of Mtb Pks13, 5V40: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM6, 5V41: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM5, 5V42: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM3, 7M7V: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with Compound 6 Optimization of TAM16, 8Q0U: Identification and optimisation of novel inhibitors of the Polyketide synthetase 13 thioesterase domain with antitubercular activity, 8Q17: Identification and optimisation of novel inhibitors of the Polyketide synthetase 13 thioesterase domain with antitubercular activity, 8TQG: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor X20419, 8TQV: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor X20403, 8TR4: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor X20404, 8TRY: Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor X20348 No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA VPVFVFHPAGGSTVVYEPLLGRLPADTPMYGFERVEGSIEERAQQYVPKL IEMQGDGPYVLVGWSLGGVLAYACAIGLRRLGKDVRFVGLIDAVRAGEEI PQTKEEIRKRWDRYAAFAEKTFNVTIPAIPYEQLEELDDEGQVRFVLDAV SQSGVQIPAGIIEHQRTSYLDNRAIDTAQIQPYDGHVTLYMADRYHDDAI MFEPRYAVRQPDGGWGEYVSDLEVVPIGGEHIQAIDEPIIAKVGEHMSRA LGQIEADRTSEVGKQ
The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 13, a unique enzyme that forms alpha-alkyl beta-ketoesters as a direct precursor of mycolic acids which are essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of - 11.25 kcal/mol, - 9.87 kcal/mol and - 9.33 kcal/mol, respectively. The control molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable with maximum root mean square deviation (RMSD) value of 3 A. Similarly, the MM-GB\PBSA method revealed highly stable complexes with mean energy values < - 75 kcal/mol for all three systems. The net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable candidates for additional experimentations. In summary, the study findings are significant, and the compounds may be used in experimental validation pipeline to develop potential drugs against drug-resistant tuberculosis.
        
Title: Structure-Based Optimization of Coumestan Derivatives as Polyketide Synthase 13-Thioesterase(Pks13-TE) Inhibitors with Improved hERG Profiles for Mycobacterium tuberculosis Treatment Zhang W, Lun S, Wang SS, Cai YP, Yang F, Tang J, Bishai WR, Yu LF Ref: Journal of Medicinal Chemistry, 65:13240, 2022 : PubMed
Pks13 was identified as a key enzyme involved in the final step of mycolic acid biosynthesis. We previously identified antitubercular coumestans that targeted Pks13-TE, and these compounds exhibited high potency both in vitro and in vivo. However, lead compound 8 presented potential safety concerns because it inhibits the hERG potassium channel in electrophysiology patch-clamp assays (IC(50) = 0.52 microM). By comparing the Pks13-TE-compound 8 complex and the ligand-binding pocket of the hERG ion channel, fluoro-substituted and oxazine-containing coumestans were designed and synthesized. Fluoro-substituted compound 23 and oxazine-containing coumestan 32 showed excellent antitubercular activity against both drug-susceptible and drug-resistant Mtb strains (MIC = 0.0039-0.0078 microg/mL) and exhibited limited hERG inhibition (IC(50) <= 25 microM). Moreover, 32 exhibited improved metabolic stability relative to parent compound 8 while showing favorable bioavailability in mouse models via serum inhibition titration assays.
We previously reported a series of coumestans-a naturally occurring tetracyclic scaffold containing a delta-lactone-that effectively target the thioesterase domain of polyketide synthase 13 (Pks13) in Mycobacterium tuberculosis (Mtb), resulting in superior anti-tuberculosis (TB) activity. Compared to the corresponding 'open-form' ethyl benzofuran-3-carboxylates, the enhanced anti-TB effects seen with the conformationally restricted coumestan series could be attributed to the extra Pi-Pi stacking interactions between the benzene ring of coumestans and the phenyl ring of F1670 residue located in the Pks13-TE binding domain. To further probe this binding feature, novel tetracyclic analogues were synthesized and evaluated for their anti-TB activity against the Mtb strain H(37)Rv. Initial comparison of the 'open-form' analogueues against the tetracyclic counterparts again showed that the latter is superior in terms of anti-TB activity. In particular, the delta-lactam-containing 5H-benzofuro [3,2-c]quinolin-6-ones gave the most promising results. Compound 65 demonstrated potent activity against Mtb H(37)Rv with MIC value between 0.0313 and 0.0625 microg/mL, with high selectivity to Vero cells (64-128 fold). The thermal stability analysis supports the notion that the tetracyclic compounds bind to the Pks13-TE domain as measured by nano DSF, consistent with the observed SAR trends. Compound 65 also showed excellent selectivity against actinobacteria and therefore unlikely to develop potential drug resistance to nonpathogenic bacteria.
The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 13, a unique enzyme that forms alpha-alkyl beta-ketoesters as a direct precursor of mycolic acids which are essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of - 11.25 kcal/mol, - 9.87 kcal/mol and - 9.33 kcal/mol, respectively. The control molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable with maximum root mean square deviation (RMSD) value of 3 A. Similarly, the MM-GB\PBSA method revealed highly stable complexes with mean energy values < - 75 kcal/mol for all three systems. The net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable candidates for additional experimentations. In summary, the study findings are significant, and the compounds may be used in experimental validation pipeline to develop potential drugs against drug-resistant tuberculosis.
With increasing drug resistance in tuberculosis (TB) patient populations, there is an urgent need for new drugs. Ideally, new agents should work through novel targets so that they are unencumbered by preexisting clinical resistance to current treatments. Benzofuran 1 was identified as a potential lead for TB inhibiting a novel target, the thioesterase domain of Pks13. Although, having promising activity against Mycobacterium tuberculosis, its main liability was inhibition of the hERG cardiac ion channel. This article describes the optimization of the series toward a preclinical candidate. Despite improvements in the hERG liability in vitro, when new compounds were assessed in ex vivo cardiotoxicity models, they still induced cardiac irregularities. Further series development was stopped because of concerns around an insufficient safety window. However, the demonstration of in vivo activity for multiple series members further validates Pks13 as an attractive novel target for antitubercular drugs and supports development of alternative chemotypes.
        
Title: Structure-Based Optimization of Coumestan Derivatives as Polyketide Synthase 13-Thioesterase(Pks13-TE) Inhibitors with Improved hERG Profiles for Mycobacterium tuberculosis Treatment Zhang W, Lun S, Wang SS, Cai YP, Yang F, Tang J, Bishai WR, Yu LF Ref: Journal of Medicinal Chemistry, 65:13240, 2022 : PubMed
Pks13 was identified as a key enzyme involved in the final step of mycolic acid biosynthesis. We previously identified antitubercular coumestans that targeted Pks13-TE, and these compounds exhibited high potency both in vitro and in vivo. However, lead compound 8 presented potential safety concerns because it inhibits the hERG potassium channel in electrophysiology patch-clamp assays (IC(50) = 0.52 microM). By comparing the Pks13-TE-compound 8 complex and the ligand-binding pocket of the hERG ion channel, fluoro-substituted and oxazine-containing coumestans were designed and synthesized. Fluoro-substituted compound 23 and oxazine-containing coumestan 32 showed excellent antitubercular activity against both drug-susceptible and drug-resistant Mtb strains (MIC = 0.0039-0.0078 microg/mL) and exhibited limited hERG inhibition (IC(50) <= 25 microM). Moreover, 32 exhibited improved metabolic stability relative to parent compound 8 while showing favorable bioavailability in mouse models via serum inhibition titration assays.
We previously reported a series of coumestans-a naturally occurring tetracyclic scaffold containing a delta-lactone-that effectively target the thioesterase domain of polyketide synthase 13 (Pks13) in Mycobacterium tuberculosis (Mtb), resulting in superior anti-tuberculosis (TB) activity. Compared to the corresponding 'open-form' ethyl benzofuran-3-carboxylates, the enhanced anti-TB effects seen with the conformationally restricted coumestan series could be attributed to the extra Pi-Pi stacking interactions between the benzene ring of coumestans and the phenyl ring of F1670 residue located in the Pks13-TE binding domain. To further probe this binding feature, novel tetracyclic analogues were synthesized and evaluated for their anti-TB activity against the Mtb strain H(37)Rv. Initial comparison of the 'open-form' analogueues against the tetracyclic counterparts again showed that the latter is superior in terms of anti-TB activity. In particular, the delta-lactam-containing 5H-benzofuro [3,2-c]quinolin-6-ones gave the most promising results. Compound 65 demonstrated potent activity against Mtb H(37)Rv with MIC value between 0.0313 and 0.0625 microg/mL, with high selectivity to Vero cells (64-128 fold). The thermal stability analysis supports the notion that the tetracyclic compounds bind to the Pks13-TE domain as measured by nano DSF, consistent with the observed SAR trends. Compound 65 also showed excellent selectivity against actinobacteria and therefore unlikely to develop potential drug resistance to nonpathogenic bacteria.
Our group recently reported the identification of novel coumestan derivatives as Mycobacterium tuberculosis ( Mtb) Pks13-thioesterase (TE) domain inhibitors, with mutations observed (D1644G and N1640K) in the generated coumestan-resistant Mtb colonies. Herein, we report a further structure-activity relationships exploration exploiting the available Pks13-TE X-ray co-crystal structure that resulted in the discovery of extremely potent coumestan analogues 48 and 50. These molecules possess excellent anti-tuberculosis activity against both the drug-susceptible (MIC = 0.0039 microg/mL) and drug-resistant Mtb strains (MIC = 0.0078 microg/mL). Moreover, the excellent in vitro activity is translated to the in vivo mouse serum inhibitory titration assay, with administration of coumestan 48 at 100 mg/kg showing an 8-fold higher activity than that of isoniazid or TAM16 given at 10 or 100 mg/kg, respectively. Preliminary ADME-Tox data for the coumestans were promising and, coupled with the practicality of synthesis, warrant further in vivo efficacy assessments of the coumestan derivatives.
        
Title: Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases Goins CM, Sudasinghe TD, Liu X, Wang Y, O'Doherty GA, Ronning DR Ref: Biochemistry, 57:2383, 2018 : PubMed
Tetrahydrolipstatin (THL) is a covalent inhibitor of many serine esterases. In mycobacteria, THL has been found to covalently react with 261 lipid esterases upon treatment of Mycobacterium bovis cell lysate. However, the covalent adduct is considered unstable in some cases because of the hydrolysis of the enzyme-linked THL adduct resulting in catalytic turnover. In this study, a library of THL stereoderivatives was tested against three essential Mycobacterium tuberculosis lipid esterases of interest for drug development to assess how the stereochemistry of THL affects respective enzyme inhibition and allows for cross enzyme inhibition. The mycolyltransferase Antigen 85C (Ag85C) was found to be stereospecific with regard to THL; covalent inhibition occurs within minutes and was previously shown to be irreversible. Conversely, the Rv3802 phospholipase A/thioesterase was more accepting of a variety of THL configurations and uses these compounds as alternative substrates. The reaction of the THL stereoderivatives with the thioesterase domain of polyketide synthase 13 (Pks13-TE) also leads to hydrolytic turnover and is nonstereospecific but occurs on a slower, multihour time scale. Our findings suggest the stereochemistry of the beta-lactone ring of THL is important for cross enzyme reactivity, while the two stereocenters of the peptidyl arm can affect enzyme specificity and the catalytic hydrolysis of the beta-lactone ring. The observed kinetic data for all three target enzymes are supported by recently published X-ray crystal structures of Ag85C, Rv3802, and Pks13-TE. Insights from this study provide a molecular basis for the kinetic modulation of three essential M. tuberculosis lipid esterases by THL and can be applied to increase potency and enzyme residence times and enhance the specificity of the THL scaffold.
        
Title: Crystallization and structure analysis of the core motif of the Pks13 acyltransferase domain from Mycobacterium tuberculosis Yu M, Dou C, Gu Y, Cheng W Ref: PeerJ, 6:e4728, 2018 : PubMed
Type I polyketide synthase 13 (Pks13) is involved in the final step of the biosynthesis of mycolic acid in Mycobacterium tuberculosis. Recent articles have reported that Pks13 is an essential enzyme in the mycolic acid biosynthesis pathway, and it has been deeply studied as a drug target in Tuberculosis. We report a high-resolution structure of the acyltransferase (AT) domain of Pks13 at 2.59 A resolution. Structural comparison with the full-length AT domain (PDB code, 3TZW, and 3TZZ) reveals a different orientation of the C-terminal helix and rearrangement of some conserved residues.
Inhibition of the mycolic acid pathway has proven a viable strategy in antitubercular drug discovery. The AccA3/AccD4/FadD32/Pks13 complex of Mycobacterium tuberculosis constitutes an essential biosynthetic mechanism for mycolic acids. Small molecules targeting the thioesterase domain of Pks13 have been reported, including a benzofuran-based compound whose X-ray cocrystal structure has been very recently solved. Its initial inactivity in a serum inhibition titration (SIT) assay led us to further probe other structurally related benzofurans with the aim to improve their potency and bioavailability. Herein, we report our preliminary structure-activity relationship studies around this scaffold, highlighting a natural product-inspired cyclization strategy to form coumestans that are shown to be active in SIT. Whole genome deep sequencing of the coumestan-resistant mutants confirmed a single nucleotide polymorphism in the pks13 gene responsible for the resistance phenotype, demonstrating the druggability of this target for the development of new antitubercular agents.
Widespread resistance to first-line TB drugs is a major problem that will likely only be resolved through the development of new drugs with novel mechanisms of action. We have used structure-guided methods to develop a lead molecule that targets the thioesterase activity of polyketide synthase Pks13, an essential enzyme that forms mycolic acids, required for the cell wall of Mycobacterium tuberculosis. Our lead, TAM16, is a benzofuran class inhibitor of Pks13 with highly potent in vitro bactericidal activity against drug-susceptible and drug-resistant clinical isolates of M. tuberculosis. In multiple mouse models of TB infection, TAM16 showed in vivo efficacy equal to the first-line TB drug isoniazid, both as a monotherapy and in combination therapy with rifampicin. TAM16 has excellent pharmacological and safety profiles, and the frequency of resistance for TAM16 is approximately 100-fold lower than INH, suggesting that it can be developed as a new antitubercular aimed at the acute infection. PAPERCLIP.
        
Title: The alpha/beta Hydrolase Fold Proteins of Mycobacterium tuberculosis, With Reference to their Contribution to Virulence Johnson G Ref: Curr Protein Pept Sci, 18:190, 2016 : PubMed
The alpha/beta hydrolase fold superfamily is an ancient and widely diversified group of primarily hydrolytic enzymes. In this review, the adaptations of these proteins to the pathogenic lifestyle of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, are examined. Of the 105 alpha/beta hydrolases identified in Mtb, many are associated with lipid metabolism, particularly in the biosynthesis and maintenance of the Mtb's unique cell envelope, as well in the large number of extracellular lipases that are likely responsible for degradation of host lipid material. alpha/beta hydrolase fold proteins are also involved in the evasion and modulation of the immune response, detoxification and metabolic adaptations, including growth, response to acidification of the intracellular environment and dormancy. A striking feature of Mtb's alpha/beta hydrolases is their diversification into virulence-associated niches. It is clear that the alpha/beta hydrolase fold family has made a significant contribution to Mtb's remarkable success as a pathogen.
Tuberculosis (TB) and its drug resistant forms kills more people than any other infectious disease. This fact emphasizes the need to identify new drugs to treat TB. 2-Aminothiophenes (2AT) have been reported to inhibit Pks13, a validated anti-TB drug target. We synthesized a library of 42 2AT compounds. Among these, compound 33 showed remarkable potency against Mycobacterium tuberculosis (Mtb) H37RV (MIC = 0.23 muM) and showed an impressive potency (MIC = 0.20-0.44 muM) against Mtb strains resistant to isoniazid, rifampicin and fluoroquinolones. The site of action for the compound 33 is presumed to be Pks13 or an earlier enzyme in the mycolic acid biosynthetic pathway. This inference is based on structural similarity of the compound 33 with known Pks13 inhibitors, which is corroborated by mycolic acid biosynthesis studies showing that the compound strongly inhibits the biosynthesis of all forms of mycolic acid in Mtb. In summary, these studies suggest 33 represents a promising anti-TB lead that exhibits activity well below toxicity to human monocytic cells.
Mycolate-containing compounds constitute major strategic elements of the protective coat surrounding the tubercle bacillus. We have previously shown that FAAL32-Pks13 polyketide synthase catalyzes the condensation reaction, which produces alpha-alkyl beta-ketoacids, direct precursors of mycolic acids. In contrast to the current biosynthesis model, we show here that Pks13 catalyzes itself the release of the neosynthesized products and demonstrate that this function is carried by its thioesterase-like domain. Most importantly, in agreement with the prediction of a trehalose-binding pocket in its catalytic site, this domain exhibits an acyltransferase activity and transfers Pks13's products onto an acceptor molecule, mainly trehalose, leading to the formation of the trehalose monomycolate precursor. Thus, this work allows elucidation of the hinge step of the mycolate-containing compound biosynthesis pathway. Above all, it highlights a unique mechanism of transfer of polyketide synthase products in mycobacteria, which is distinct from the conventional intervention of the discrete polyketide-associated protein (Pap)-type acyltransferases.
We report a new class of thiophene (TP) compounds that kill Mycobacterium tuberculosis by the previously uncharacterized mechanism of Pks13 inhibition. An F79S mutation near the catalytic Ser55 site in Pks13 conferred TP resistance in M. tuberculosis. Overexpression of wild-type Pks13 resulted in TP resistance, and overexpression of the Pks13(F79S) mutant conferred high resistance. In vitro, TP inhibited fatty acyl-AMP loading onto Pks13. TP inhibited mycolic acid biosynthesis in wild-type M. tuberculosis, but it did so to a much lesser extent in TP-resistant M. tuberculosis. TP treatment was bactericidal and equivalent to treatment with the first-line drug isoniazid, but it was less likely to permit emergent resistance. Combined isoniazid and TP treatment resulted in sterilizing activity. Computational docking identified a possible TP-binding groove within the Pks13 acyl carrier protein domain. This study confirms that M. tuberculosis Pks13 is required for mycolic acid biosynthesis, validates it as a druggable target and demonstrates the therapeutic potential of simultaneously inhibiting multiple targets in the same biosynthetic pathway.
Pks13 is a type I polyketide synthase involved in the final biosynthesis step of mycolic acids, virulence factors, and essential components of the Mycobacterium tuberculosis envelope. Here, we report the biochemical and structural characterization of a 52-kDa fragment containing the acyltransferase domain of Pks13. This fragment retains the ability to load atypical extender units, unusually long chain acyl-CoA with a predilection for carboxylated substrates. High resolution crystal structures were determined for the apo, palmitoylated, and carboxypalmitoylated forms. Structural conservation with type I polyketide synthases and related fatty-acid synthases also extends to the interdomain connections. Subtle changes could be identified both in the active site and in the upstream and downstream linkers in line with the organization displayed by this singular polyketide synthase. More importantly, the crystallographic analysis illustrated for the first time how a long saturated chain can fit in the core structure of an acyltransferase domain through a dedicated channel. The structures also revealed the unexpected binding of a 12-mer peptide that might provide insight into domain-domain interaction.
The genome sequencing of H37Rv strain of Mycobacterium tuberculosis was completed in 1998 followed by the whole genome sequencing of a clinical isolate, CDC1551 in 2002. Since then, the genomic sequences of a number of other strains have become available making it one of the better studied pathogenic bacterial species at the genomic level. However, annotation of its genome remains challenging because of high GC content and dissimilarity to other model prokaryotes. To this end, we carried out an in-depth proteogenomic analysis of the M. tuberculosis H37Rv strain using Fourier transform mass spectrometry with high resolution at both MS and tandem MS levels. In all, we identified 3176 proteins from Mycobacterium tuberculosis representing ~80% of its total predicted gene count. In addition to protein database search, we carried out a genome database search, which led to identification of ~250 novel peptides. Based on these novel genome search-specific peptides, we discovered 41 novel protein coding genes in the H37Rv genome. Using peptide evidence and alternative gene prediction tools, we also corrected 79 gene models. Finally, mass spectrometric data from N terminus-derived peptides confirmed 727 existing annotations for translational start sites while correcting those for 33 proteins. We report creation of a high confidence set of protein coding regions in Mycobacterium tuberculosis genome obtained by high resolution tandem mass-spectrometry at both precursor and fragment detection steps for the first time. This proteogenomic approach should be generally applicable to other organisms whose genomes have already been sequenced for obtaining a more accurate catalogue of protein-coding genes.
The last steps of the biosynthesis of mycolic acids, essential and specific lipids of Mycobacterium tuberculosis and related bacteria, are catalyzed by proteins encoded by the fadD32-pks13-accD4 cluster. Here, we produced and purified an active form of the Pks13 polyketide synthase, with a phosphopantetheinyl (P-pant) arm at both positions Ser-55 and Ser-1266 of its two acyl carrier protein (ACP) domains. Combination of liquid chromatography-tandem mass spectrometry of protein tryptic digests and radiolabeling experiments showed that, in vitro, the enzyme specifically loads long-chain 2-carboxyacyl-CoA substrates onto the P-pant arm of its C-terminal ACP domain via the acyltransferase domain. The acyl-AMPs produced by the FadD32 enzyme are specifically transferred onto the ketosynthase domain after binding to the P-pant moiety of the N-terminal ACP domain of Pks13 (N-ACP(Pks13)). Unexpectedly, however, the latter step requires the presence of active FadD32. Thus, the couple FadD32-(N-ACP(Pks13)) composes the initiation module of the mycolic condensation system. Pks13 ultimately condenses the two loaded fatty acyl chains to produce alpha-alkyl beta-ketoacids, the precursors of mycolic acids. The developed in vitro assay will constitute a strategic tool for antimycobacterial drug screening.
Mycolic acids are major and specific lipids of Mycobacterium tuberculosis cell envelope. Their synthesis requires the condensation by Pks13 of a C(22)-C(26) fatty acid with the C(50)-C(60) meromycolic acid activated by FadD32, a fatty acyl-AMP ligase essential for mycobacterial growth. A combination of biochemical and enzymatic approaches demonstrated that FadD32 exhibits substrate specificity for relatively long-chain fatty acids. More importantly, FadD32 catalyzes the transfer of the synthesized acyl-adenylate onto specific thioester acceptors, thus revealing the protein acyl-ACP ligase function. Therefore, FadD32 might be the prototype of a group of M. tuberculosis polyketide-synthase-associated adenylation enzymes possessing such activity. A substrate analog of FadD32 inhibited not only the enzyme activity but also mycolic acid synthesis and mycobacterial growth, opening an avenue for the development of novel antimycobacterial agents.
        
Title: Whole genome sequence analysis of Mycobacterium bovis bacillus Calmette-Guerin (BCG) Tokyo 172: a comparative study of BCG vaccine substrains Seki M, Honda I, Fujita I, Yano I, Yamamoto S, Koyama A Ref: Vaccine, 27:1710, 2009 : PubMed
To investigate the molecular characteristics of bacillus Calmette-Guerin (BCG) vaccines, the complete genomic sequence of Mycobacterium bovis BCG Tokyo 172 was determined, and the results were compared with those for BCG Pasteur and other M. tuberculosis complex. The genome of BCG Tokyo had a length of 4,371,711bp and contained 4033 genes, including 3950 genes coding for proteins (CDS). There were 18 regions of difference (showing differences of more than 20bp), 20 insertion or deletion (ins/del) mutations of less than 20bp, and 68 SNPs between the two BCG substrains. These findings are useful for better understanding of the genetic differences in BCG substrains due to in vitro evolution of BCG.
To understand the evolution, attenuation, and variable protective efficacy of bacillus Calmette-Guerin (BCG) vaccines, Mycobacterium bovis BCG Pasteur 1173P2 has been subjected to comparative genome and transcriptome analysis. The 4,374,522-bp genome contains 3,954 protein-coding genes, 58 of which are present in two copies as a result of two independent tandem duplications, DU1 and DU2. DU1 is restricted to BCG Pasteur, although four forms of DU2 exist; DU2-I is confined to early BCG vaccines, like BCG Japan, whereas DU2-III and DU2-IV occur in the late vaccines. The glycerol-3-phosphate dehydrogenase gene, glpD2, is one of only three genes common to all four DU2 variants, implying that BCG requires higher levels of this enzyme to grow on glycerol. Further amplification of the DU2 region is ongoing, even within vaccine preparations used to immunize humans. An evolutionary scheme for BCG vaccines was established by analyzing DU2 and other markers. Lesions in genes encoding sigma-factors and pleiotropic transcriptional regulators, like PhoR and Crp, were also uncovered in various BCG strains; together with gene amplification, these affect gene expression levels, immunogenicity, and, possibly, protection against tuberculosis. Furthermore, the combined findings suggest that early BCG vaccines may even be superior to the later ones that are more widely used.
Mycobacterium tuberculosis contains >20 enzymes that require activation by transfer of the 4'-phosphopantetheine moiety of CoA onto a conserved serine residue, a posttranslational modification catalyzed by 4'-phosphopantetheinyl transferases (PPTases). The modified proteins are involved in key metabolic processes such as cell envelope biogenesis and the production of virulence factors. We show that two PPTases conserved in all Mycobacterium spp. and in related genera activate two different subsets of proteins and are not functionally redundant. One enzyme, AcpS, activates the two fatty acid synthase systems of mycobacteria, whereas the other PPTase, PptT, acts on type-I polyketide synthases and nonribosomal peptide synthases, both of which are involved in the biosynthesis of virulence factors. We demonstrate that both PPTases are essential for Mycobacterium smegmatis viability and that PptT is required for the survival of Mycobacterium bovis bacillus Calmette-Guerin. These enzymes are thus central to the biology of mycobacteria and for mycobacterial pathogenesis and represent promising targets for new antituberculosis drugs.
Mycobacterium bovis is the causative agent of tuberculosis in a range of animal species and man, with worldwide annual losses to agriculture of $3 billion. The human burden of tuberculosis caused by the bovine tubercle bacillus is still largely unknown. M. bovis was also the progenitor for the M. bovis bacillus Calmette-Guerin vaccine strain, the most widely used human vaccine. Here we describe the 4,345,492-bp genome sequence of M. bovis AF2122/97 and its comparison with the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. Strikingly, the genome sequence of M. bovis is >99.95% identical to that of M. tuberculosis, but deletion of genetic information has led to a reduced genome size. Comparison with M. leprae reveals a number of common gene losses, suggesting the removal of functional redundancy. Cell wall components and secreted proteins show the greatest variation, indicating their potential role in host-bacillus interactions or immune evasion. Furthermore, there are no genes unique to M. bovis, implying that differential gene expression may be the key to the host tropisms of human and bovine bacilli. The genome sequence therefore offers major insight on the evolution, host preference, and pathobiology of M. bovis.
Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.