(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Glires: NE > Rodentia: NE > Myomorpha: NE > Muroidea: NE > Muridae: NE > Murinae: NE > Mus [genus]: NE > Mus [subgenus]: NE > Mus musculus: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Mus musculus molossinus: N, E.
Molecular evidence
Database
No mutation 1 structure: 7KDV: Murine core lysosomal multienzyme complex (LMC) composed of acid beta-galactosidase (GLB1) and protective protein cathepsin A (PPCA, CTSA) No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MPGTALSPLLLLLLLSWASRNEAAPDQDEIDCLPGLAKQPSFRQYSGYLR ASDSKHFHYWFVESQNDPKNSPVVLWLNGGPGCSSLDGLLTEHGPFLIQP DGVTLEYNPYAWNLIANVLYIESPAGVGFSYSDDKMYVTNDTEVAENNYE ALKDFFRLFPEYKDNKLFLTGESYAGIYIPTLAVLVMQDPSMNLQGLAVG NGLASYEQNDNSLVYFAYYHGLLGNRLWTSLQTHCCAQNKCNFYDNKDPE CVNNLLEVSRIVGKSGLNIYNLYAPCAGGVPGRHRYEDTLVVQDFGNIFT RLPLKRRFPEALMRSGDKVRLDPPCTNTTAPSNYLNNPYVRKALHIPESL PRWDMCNFLVNLQYRRLYQSMNSQYLKLLSSQKYQILLYNGDVDMACNFM GDEWFVDSLNQKMEVQRRPWLVDYGESGEQVAGFVKECSHITFLTIKGAG HMVPTDKPRAAFTMFSRFLNKEPY
References
9 moreTitle: Lysosomal Cathepsin A Plays a Significant Role in the Processing of Endogenous Bioactive Peptides Timur ZK, Akyildiz Demir S, Seyrantepe V Ref: Front Mol Biosci, 3:68, 2016 : PubMed
Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSA(S190A) . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and endothelin-I in the kidney, liver, lung, brain and serum from CTSA(S190A) mouse model at 3- and 6-months of age. Our results suggest CTSA selectively contributes to processing of bioactive peptides in different tissues from CTSA(S190A) mice compared to age matched WT mice.
        
Title: Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor Cuervo AM, Mann L, Bonten EJ, d'Azzo A, Dice JF Ref: EMBO Journal, 22:47, 2003 : PubMed
Protective protein/cathepsin A (PPCA) has a serine carboxypeptidase activity of unknown physiological function. We now demonstrate that this protease activity triggers the degradation of the lysosome-associated membrane protein type 2a (lamp2a), a receptor for chaperone-mediated autophagy (CMA). Degradation of lamp2a is important because its level in the lysosomal membrane is a rate-limiting step of CMA. Cells defective in PPCA show reduced rates of lamp2a degradation, higher levels of lamp2a and higher rates of CMA. Restoration of PPCA protease activity increases rates of lamp2a degradation, reduces levels of lysosomal lamp2a and reduces rates of CMA. PPCA associates with lamp2a on the lysosomal membrane and cleaves lamp2a near the boundary between the luminal and transmembrane domains. In addition to the well-studied role of PPCA in targeting and protecting two lysosomal glycosidases, we have defined a role for the proteolytic activity of this multifunctional protein.
        
Title: Mouse 'protective protein': cDNA cloning, sequence comparison, and expression Galjart NJ, Gillemans N, Meijer D, d'Azzo A Ref: Journal of Biological Chemistry, 265:4678, 1990 : PubMed
The protective protein is the glycoprotein that forms a complex with the lysosomal enzymes beta-galactosidase and neuraminidase. Its deficiency in man leads to the metabolic storage disorder galactosialidosis. The primary structure of human protective protein, deduced from its cloned cDNA, shows homology to yeast serine carboxypeptidases. We have isolated a full-length cDNA encoding murine protective protein. The nucleotide sequences as well as the predicted amino acid sequences are highly conserved between man and mouse. Domains important for the protease function are completely identical in the two proteins. Both human and mouse mature protective proteins covalently bind radiolabeled diisopropyl fluorophosphate. Transient expression of the murine cDNA in COS-1 cells yields a protective protein precursor of 54 kDa, a size characteristic of the glycosylated form. This cDNA-encoded precursor, endocytosed by human galactosialidosis fibroblasts, is processed into a 32- and a 20-kDa heterodimer and corrects beta-galactosidase and neuraminidase activities. A tissue-specific expression of protective protein mRNA is observed when total RNA from different mouse organs is analyzed on Northern blots.
        
9 lessTitle: Lysosomal Cathepsin A Plays a Significant Role in the Processing of Endogenous Bioactive Peptides Timur ZK, Akyildiz Demir S, Seyrantepe V Ref: Front Mol Biosci, 3:68, 2016 : PubMed
Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSA(S190A) . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and endothelin-I in the kidney, liver, lung, brain and serum from CTSA(S190A) mouse model at 3- and 6-months of age. Our results suggest CTSA selectively contributes to processing of bioactive peptides in different tissues from CTSA(S190A) mice compared to age matched WT mice.
This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts.
Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring "genes" in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.
        
Title: Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor Cuervo AM, Mann L, Bonten EJ, d'Azzo A, Dice JF Ref: EMBO Journal, 22:47, 2003 : PubMed
Protective protein/cathepsin A (PPCA) has a serine carboxypeptidase activity of unknown physiological function. We now demonstrate that this protease activity triggers the degradation of the lysosome-associated membrane protein type 2a (lamp2a), a receptor for chaperone-mediated autophagy (CMA). Degradation of lamp2a is important because its level in the lysosomal membrane is a rate-limiting step of CMA. Cells defective in PPCA show reduced rates of lamp2a degradation, higher levels of lamp2a and higher rates of CMA. Restoration of PPCA protease activity increases rates of lamp2a degradation, reduces levels of lysosomal lamp2a and reduces rates of CMA. PPCA associates with lamp2a on the lysosomal membrane and cleaves lamp2a near the boundary between the luminal and transmembrane domains. In addition to the well-studied role of PPCA in targeting and protecting two lysosomal glycosidases, we have defined a role for the proteolytic activity of this multifunctional protein.
Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.
In the effort to prepare the mouse full-length cDNA encyclopedia, we previously developed several techniques to prepare and select full-length cDNAs. To increase the number of different cDNAs, we introduce here a strategy to prepare normalized and subtracted cDNA libraries in a single step. The method is based on hybridization of the first-strand, full-length cDNA with several RNA drivers, including starting mRNA as the normalizing driver and run-off transcripts from minilibraries containing highly expressed genes, rearrayed clones, and previously sequenced cDNAs as subtracting drivers. Our method keeps the proportion of full-length cDNAs in the subtracted/normalized library high. Moreover, our method dramatically enhances the discovery of new genes as compared to results obtained by using standard, full-length cDNA libraries. This procedure can be extended to the preparation of full-length cDNA encyclopedias from other organisms.
The RIKEN high-throughput 384-format sequencing pipeline (RISA system) including a 384-multicapillary sequencer (the so-called RISA sequencer) was developed for the RIKEN mouse encyclopedia project. The RISA system consists of colony picking, template preparation, sequencing reaction, and the sequencing process. A novel high-throughput 384-format capillary sequencer system (RISA sequencer system) was developed for the sequencing process. This system consists of a 384-multicapillary auto sequencer (RISA sequencer), a 384-multicapillary array assembler (CAS), and a 384-multicapillary casting device. The RISA sequencer can simultaneously analyze 384 independent sequencing products. The optical system is a scanning system chosen after careful comparison with an image detection system for the simultaneous detection of the 384-capillary array. This scanning system can be used with any fluorescent-labeled sequencing reaction (chain termination reaction), including transcriptional sequencing based on RNA polymerase, which was originally developed by us, and cycle sequencing based on thermostable DNA polymerase. For long-read sequencing, 380 out of 384 sequences (99.2%) were successfully analyzed and the average read length, with more than 99% accuracy, was 654.4 bp. A single RISA sequencer can analyze 216 kb with >99% accuracy in 2.7 h (90 kb/h). For short-read sequencing to cluster the 3' end and 5' end sequencing by reading 350 bp, 384 samples can be analyzed in 1.5 h. We have also developed a RISA inoculator, RISA filtrator and densitometer, RISA plasmid preparator which can handle throughput of 40,000 samples in 17.5 h, and a high-throughput RISA thermal cycler which has four 384-well sites. The combination of these technologies allowed us to construct the RISA system consisting of 16 RISA sequencers, which can process 50,000 DNA samples per day. One haploid genome shotgun sequence of a higher organism, such as human, mouse, rat, domestic animals, and plants, can be revealed by seven RISA systems within one month.
Title: The atomic model of the human protective protein/cathepsin A suggests a structural basis for galactosialidosis Rudenko G, Bonten E, Hol WG, d'Azzo A Ref: Proceedings of the National Academy of Sciences of the United States of America, 95:621, 1998 : PubMed
Human protective protein/cathepsin A (PPCA), a serine carboxypeptidase, forms a multienzyme complex with beta-galactosidase and neuraminidase and is required for the intralysosomal activity and stability of these two glycosidases. Genetic lesions in PPCA lead to a deficiency of beta-galactosidase and neuraminidase that is manifest as the autosomal recessive lysosomal storage disorder galactosialidosis. Eleven amino acid substitutions identified in mutant PPCAs from clinically different galactosialidosis patients have now been modeled in the three-dimensional structure of the wild-type enzyme. Of these substitutions, 9 are located in positions likely to alter drastically the folding and stability of the variant protein. In contrast, the other 2 mutations that are associated with a more moderate clinical outcome and are characterized by residual mature protein appeared to have a milder effect on protein structure. Remarkably, none of the mutations occurred in the active site or at the protein surface, which would have disrupted the catalytic activity or protective function. Instead, analysis of the 11 mutations revealed a substantive correlation between the effect of the amino acid substitution on the integrity of protein structure and the general severity of the clinical phenotype. The high incidence of PPCA folding mutants in galactosialidosis reflects the fact that a single point mutation is unlikely to affect both the beta-galactosidase and the neuraminidase binding sites of PPCA at the same time to produce the double glycosidase deficiency. Mutations in PPCA that result in defective folding, however, disrupt every function of PPCA simultaneously.
        
Title: Mouse 'protective protein': cDNA cloning, sequence comparison, and expression Galjart NJ, Gillemans N, Meijer D, d'Azzo A Ref: Journal of Biological Chemistry, 265:4678, 1990 : PubMed
The protective protein is the glycoprotein that forms a complex with the lysosomal enzymes beta-galactosidase and neuraminidase. Its deficiency in man leads to the metabolic storage disorder galactosialidosis. The primary structure of human protective protein, deduced from its cloned cDNA, shows homology to yeast serine carboxypeptidases. We have isolated a full-length cDNA encoding murine protective protein. The nucleotide sequences as well as the predicted amino acid sequences are highly conserved between man and mouse. Domains important for the protease function are completely identical in the two proteins. Both human and mouse mature protective proteins covalently bind radiolabeled diisopropyl fluorophosphate. Transient expression of the murine cDNA in COS-1 cells yields a protective protein precursor of 54 kDa, a size characteristic of the glycosylated form. This cDNA-encoded precursor, endocytosed by human galactosialidosis fibroblasts, is processed into a 32- and a 20-kDa heterodimer and corrects beta-galactosidase and neuraminidase activities. A tissue-specific expression of protective protein mRNA is observed when total RNA from different mouse organs is analyzed on Northern blots.