Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes the endocannabinoid 2-arachidonoylglycerol, and thereby contributes to the regulation of endocannabinoid signaling, nociperception and perception of pain. Regulates the levels of fatty acids that serve as signaling molecules and promote cancer cell migration, invasion and tumor growth Q3UFN1 alternative splicing
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Glires: NE > Rodentia: NE > Myomorpha: NE > Muroidea: NE > Muridae: NE > Murinae: NE > Mus [genus]: NE > Mus [subgenus]: NE > Mus musculus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MPEASSPRRTPQNVPYQDLPHLVNADGQYLFCRYWKPSGTPKALIFVSHG AGEHCGRYDELAHMLKGLDMLVFAHDHVGHGQSEGERMVVSDFQVFVRDV LQHVDTIQKDYPDVPIFLLGHSMGGAISILVAAERPTYFSGMVLISPLVL ANPESASTLKVLAAKLLNFVLPNMTLGRIDSSVLSRNKSEVDLYNSDPLV CRAGLKVCFGIQLLNAVARVERAMPRLTLPFLLLQGSADRLCDSKGAYLL MESSRSQDKTLKMYEGAYHVLHRELPEVTNSVLHEVNSWVSHRIAAAGAG CPP
Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl(-/-)) and platelet-specific Mgl-deficient (platMgl(-/-)) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl(3)-induced injury was markedly reduced in Mgl(-/-) mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl(-/-) mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl(-/-) mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.
Monoglyceride lipase (MGLL) regulates metabolism by catabolizing monoacylglycerols (MAGs), including the endocannabinoid 2-arachidonoyl glycerol (2-AG) and some of its bioactive congeners, to the corresponding free fatty acids. Mgll knockout mice (Mgll(-/-)) exhibit elevated tissue levels of MAGs in association with resistance to the metabolic and cardiovascular perturbations induced by a high fat diet (HFD). The gut microbiome and its metabolic function are disrupted in obesity in a manner modulated by 2-arachidonoyl glycerol (2-AG's) main receptors, the cannabinoid CB1 receptors. We therefore hypothesized that Mgll(-/-) mice have an altered microbiome, that responds differently to diet-induced obesity from that of wild-type (WT) mice. We subjected mice to HFD and assessed changes in the microbiomes after 8 and 22 weeks. As expected, Mgll(-/-) mice showed decreased adiposity, improved insulin sensitivity, and altered circulating incretin/adipokine levels in response to HFD. Mgll(-/-) mice on a chow diet exhibited significantly higher levels of Hydrogenoanaerobacterium, Roseburia, and Ruminococcus than WT mice. The relative abundance of the Lactobacillaceae and Coriobacteriaceae and of the Lactobacillus, Enterorhabdus, Clostridium_XlVa, and Falsiporphyromonas genera was significantly altered by HFD in WT but not Mgll(-/-) mice. Differently abundant families were also associated with changes in circulating adipokine and incretin levels in HFD-fed mice. Some gut microbiota family alterations could be reproduced by supplementing 2-AG or MAGs in culturomics experiments carried out with WT mouse fecal samples. We suggest that the altered microbiome of Mgll(-/-) mice contributes to their obesity resistant phenotype, and results in part from increased levels of 2-AG and MAGs.
Nicotine, the primary psychoactive component in tobacco, plays a major role in the initiation and maintenance of tobacco dependence and addiction, a leading cause of preventable death worldwide. An essential need thus exists for more effective pharmacotherapies for nicotine-use cessation. Previous reports suggest that pharmacological and genetic blockade of CB1 receptors attenuate nicotine reinforcement and reward; while exogenous agonists enhanced these abuse-related behaviors. In this study, we utilized complementary genetic and pharmacologic approaches to test the hypothesis that increasing the levels of the endocannabinoid 2-arachindonoylglycerol (2-AG), will enhance nicotine reward by stimulating neuronal CB1 receptors. Contrary to our hypothesis, we found that inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme of 2-AG, attenuates nicotine conditioned place preference (CPP) in mice, through a non-CB1 receptor-mediated mechanism. MAGL inhibition did not alter palatable food reward or Lithium Chloride (LiCl) aversion. In support of our findings, repeated MAGL inhibition did not induce a reduction in CB1 brain receptor levels or hinder function. To explore the potential mechanism of action, we investigated if MAGL inhibition affected other fatty acid levels in our CPP paradigm. Indeed, MAGL inhibition caused a concomitant decrease in arachidonic acid (AA) levels in various brain regions of interest, suggesting an AA cascade-dependent mechanism. This idea is supported by dose-dependent attenuation of nicotine preference by the selective COX-2 inhibitors valdecoxib and LM-4131. Collectively, these findings, along with our reported studies on nicotine withdrawal, suggest that inhibition of MAGL represents a promising new target for the development of pharmacotherapies to treat nicotine dependence.
Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl(-/-)) and platelet-specific Mgl-deficient (platMgl(-/-)) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl(3)-induced injury was markedly reduced in Mgl(-/-) mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl(-/-) mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl(-/-) mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.
Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained substantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [(11)C]7 was synthesized via direct (11)CO(2) fixation method and successfully mapped MAGL distribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [(11)C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [(11)C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [(11)C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [(11)C]7 ([(11)C]RO7284390) showed promising results warranting further clinical evaluation.
Monoglyceride lipase (MGLL) regulates metabolism by catabolizing monoacylglycerols (MAGs), including the endocannabinoid 2-arachidonoyl glycerol (2-AG) and some of its bioactive congeners, to the corresponding free fatty acids. Mgll knockout mice (Mgll(-/-)) exhibit elevated tissue levels of MAGs in association with resistance to the metabolic and cardiovascular perturbations induced by a high fat diet (HFD). The gut microbiome and its metabolic function are disrupted in obesity in a manner modulated by 2-arachidonoyl glycerol (2-AG's) main receptors, the cannabinoid CB1 receptors. We therefore hypothesized that Mgll(-/-) mice have an altered microbiome, that responds differently to diet-induced obesity from that of wild-type (WT) mice. We subjected mice to HFD and assessed changes in the microbiomes after 8 and 22 weeks. As expected, Mgll(-/-) mice showed decreased adiposity, improved insulin sensitivity, and altered circulating incretin/adipokine levels in response to HFD. Mgll(-/-) mice on a chow diet exhibited significantly higher levels of Hydrogenoanaerobacterium, Roseburia, and Ruminococcus than WT mice. The relative abundance of the Lactobacillaceae and Coriobacteriaceae and of the Lactobacillus, Enterorhabdus, Clostridium_XlVa, and Falsiporphyromonas genera was significantly altered by HFD in WT but not Mgll(-/-) mice. Differently abundant families were also associated with changes in circulating adipokine and incretin levels in HFD-fed mice. Some gut microbiota family alterations could be reproduced by supplementing 2-AG or MAGs in culturomics experiments carried out with WT mouse fecal samples. We suggest that the altered microbiome of Mgll(-/-) mice contributes to their obesity resistant phenotype, and results in part from increased levels of 2-AG and MAGs.
        
Title: Termination of acute stress response by the endocannabinoid system is regulated through LSD1-mediated transcriptional repression of 2-AG hydrolases ABHD6 and MAGL Longaretti A, Forastieri C, Gabaglio M, Rubino T, Battaglioli E, Rusconi F Ref: Journal of Neurochemistry, :e15000, 2020 : PubMed
Acute environmental stress rarely implies long lasting neurophysiological and behavioral alterations. On the contrary, chronic stress exerts a potent toxic effect at the glutamatergic synapse whose altered physiology has been recognized as a core trait of neuropsychiatric disorders. The endocannabinoid system (ECS) plays an important role in the homeostatic response to acute stress. In particular, stress induces synthesis of endocannabinoid (eCB) 2-arachidonyl glycerol (2-AG). 2-AG stimulates presynaptic cannabinoid 1 (CB1) receptor contributing to stress response termination through inhibition of glutamate release, restraining thereafter anxiety arousal. We employ mouse models of stress response coupled to gene expression analyses, unravelling that in response to acute psychosocial stress in the mouse hippocampus, ECS-mediated synaptic modulation is enhanced via transcriptional repression of two enzymes involved in 2-AG degradation: alpha/beta-Hydrolase Domain containing 6 (ABHD6) and Monoacylglycerol Lipase (MAGL). Such a process is orchestrated by the epigenetic corepressor LSD1 who directly interacts with promoter regulatory regions of Abhd6 and Magl. Remarkably, negative transcriptional control of Abhd6 and Magl is lost in the hippocampus upon chronic psychosocial stress, possibly contributing to trauma-induced drift of synapse physiology toward uncontrolled glutamate transmission. We previously showed that in mice Lysine Specific Demethylase 1 (LSD1) increases its hippocampal expression in response to psychosocial stress preventing excessive consolidation of anxiety-related plasticity. With this work we unravel a nodal epigenetic modulation of eCB turn over, shedding new light on the molecular substrate of converging stress-terminating effects displayed by ECS and LSD1.
Nicotine, the primary psychoactive component in tobacco, plays a major role in the initiation and maintenance of tobacco dependence and addiction, a leading cause of preventable death worldwide. An essential need thus exists for more effective pharmacotherapies for nicotine-use cessation. Previous reports suggest that pharmacological and genetic blockade of CB1 receptors attenuate nicotine reinforcement and reward; while exogenous agonists enhanced these abuse-related behaviors. In this study, we utilized complementary genetic and pharmacologic approaches to test the hypothesis that increasing the levels of the endocannabinoid 2-arachindonoylglycerol (2-AG), will enhance nicotine reward by stimulating neuronal CB1 receptors. Contrary to our hypothesis, we found that inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme of 2-AG, attenuates nicotine conditioned place preference (CPP) in mice, through a non-CB1 receptor-mediated mechanism. MAGL inhibition did not alter palatable food reward or Lithium Chloride (LiCl) aversion. In support of our findings, repeated MAGL inhibition did not induce a reduction in CB1 brain receptor levels or hinder function. To explore the potential mechanism of action, we investigated if MAGL inhibition affected other fatty acid levels in our CPP paradigm. Indeed, MAGL inhibition caused a concomitant decrease in arachidonic acid (AA) levels in various brain regions of interest, suggesting an AA cascade-dependent mechanism. This idea is supported by dose-dependent attenuation of nicotine preference by the selective COX-2 inhibitors valdecoxib and LM-4131. Collectively, these findings, along with our reported studies on nicotine withdrawal, suggest that inhibition of MAGL represents a promising new target for the development of pharmacotherapies to treat nicotine dependence.
        
Title: Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice Pan B, Wang W, Zhong P, Blankman JL, Cravatt BF, Liu QS Ref: Journal of Neuroscience, 31:13420, 2011 : PubMed
Endocannabinoid (eCB) signaling is tightly regulated by eCB biosynthetic and degradative enzymes. The eCB 2-arachidonoylglycerol (2-AG) is hydrolyzed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB signaling, synaptic function, and learning behavior were altered in MAGL knock-out mice. We report that MAGL(-)/(-) mice exhibited prolonged depolarization-induced suppression of inhibition (DSI) in hippocampal CA1 pyramidal neurons, providing genetic evidence that the inactivation of 2-AG by MAGL determines the time course of the eCB-mediated retrograde synaptic depression. CB(1) receptor antagonists enhanced basal IPSCs in CA1 pyramidal neurons in MAGL(-)/(-) mice, while the magnitude of DSI or CB(1) receptor agonist-induced depression of IPSCs was decreased in MAGL(-)/(-) mice. These results suggest that 2-AG elevations in MAGL(-)/(-) mice cause tonic activation and partial desensitization of CB(1) receptors. Genetic deletion of MAGL selectively enhanced theta burst stimulation (TBS)-induced long-term potentiation (LTP) in the CA1 region of hippocampal slices but had no significant effect on LTP induced by high-frequency stimulation or long-term depression induced by low-frequency stimulation. The enhancement of TBS-LTP in MAGL(-)/(-) mice appears to be mediated by 2-AG-induced suppression of GABA(A) receptor-mediated inhibition. MAGL(-)/(-) mice exhibited enhanced learning as shown by improved performance in novel object recognition and Morris water maze. These results indicate that genetic deletion of MAGL causes profound changes in eCB signaling, long-term synaptic plasticity, and learning behavior.
        
Title: Genetic deletion of monoacylglycerol lipase alters endocannabinoid-mediated retrograde synaptic depression in the cerebellum Zhong P, Pan B, Gao XP, Blankman JL, Cravatt BF, Liu QS Ref: Journal de Physiologie, 589:4847, 2011 : PubMed
The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is hydrolysed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB-mediated retrograde synaptic depression in cerebellar slices was altered in MAGL knockout (MAGL(-/-)) mice. Depolarization-induced suppression of excitation (DSE) and metabotropic glutamate receptor (mGluR1)-mediated synaptic depression are mediated by 2-AG-induced activation of CB(1) receptors. We show that genetic deletion of MAGL prolonged DSE at parallel fibre (PF) or climbing fibre (CF) to Purkinje cell (PC) synapses. Likewise, mGluR1-mediated synaptic depression, induced either by high-frequency stimulation of PF or mGluR1 agonist DHPG, was prolonged in MAGL(-/-) mice. About 15% of 2-AG in the brain is hydrolysed by serine hydrolase alpha-beta-hydrolase domain 6 and 12 (ABHD6 and ABHD12). However, the selective ABHD6 inhibitor WWL123 had no significant effect on cerebellar DSE in MAGL(+/+) and (-/-) mice. The CB(1) receptor antagonist SR141716 significantly increased the amplitude of basal excitatory postsynaptic currents (EPSCs) in MAGL(-/-) mice but not in MAGL(+/+) mice. Conversely, the CB(1) agonist WIN55212 induced less depression of basal EPSCs in MAGL(-/-) mice than in MAGL(+/+) mice. These results provide genetic evidence that inactivation of 2-AG by MAGL determines the time course of eCB-mediated retrograde synaptic depression and that genetic deletion of MAGL causes tonic activation and consequential desensitization of CB(1) receptors.
Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Delta mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast.
Tumor cells display progressive changes in metabolism that correlate with malignancy, including development of a lipogenic phenotype. How stored fats are liberated and remodeled to support cancer pathogenesis, however, remains unknown. Here, we show that the enzyme monoacylglycerol lipase (MAGL) is highly expressed in aggressive human cancer cells and primary tumors, where it regulates a fatty acid network enriched in oncogenic signaling lipids that promotes migration, invasion, survival, and in vivo tumor growth. Overexpression of MAGL in nonaggressive cancer cells recapitulates this fatty acid network and increases their pathogenicity-phenotypes that are reversed by an MAGL inhibitor. Impairments in MAGL-dependent tumor growth are rescued by a high-fat diet, indicating that exogenous sources of fatty acids can contribute to malignancy in cancers lacking MAGL activity. Together, these findings reveal how cancer cells can co-opt a lipolytic enzyme to translate their lipogenic state into an array of protumorigenic signals. PAPERFLICK:
        
Title: Hydrolysis of prostaglandin glycerol esters by the endocannabinoid-hydrolyzing enzymes, monoacylglycerol lipase and fatty acid amide hydrolase Vila A, Rosengarth A, Piomelli D, Cravatt B, Marnett LJ Ref: Biochemistry, 46:9578, 2007 : PubMed
Cyclooxygenase-2 (COX-2) can oxygenate the endocannabinoids, arachidonyl ethanolamide (AEA) and 2-arachidonylglycerol (2-AG), to prostaglandin-H2-ethanolamide (PGH2-EA) and -glycerol ester (PGH2-G), respectively. Further metabolism of PGH2-EA and PGH2-G by prostaglandin synthases produces a variety of prostaglandin-EA's and prostaglandin-G's nearly as diverse as those derived from arachidonic acid. Thus, COX-2 may regulate endocannabinoid levels in neurons during retrograde signaling or produce novel endocannabinoid metabolites for receptor activation. Endocannabinoid-metabolizing enzymes are important regulators of their action, so we tested whether PG-G levels may be regulated by monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH). We found that PG-Gs are poor substrates for purified MGL and FAAH compared to 2-AG and/or AEA. Determination of substrate specificity demonstrates a 30-100- and 150-200-fold preference of MGL and FAAH for 2-AG over PG-Gs, respectively. The substrate specificity of AEA compared to those of PG-Gs was approximately 200-300 fold higher for FAAH. Thus, PG-Gs are poor substrates for the major endocannabinoid-degrading enzymes, MGL and FAAH.
Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Monoglyceride lipase (MGL) functions together with hormone-sensitive lipase to hydrolyze intracellular triglyceride stores of adipocytes and other cells to fatty acids and glycerol. In addition, MGL presumably complements lipoprotein lipase in completing the hydrolysis of monoglycerides resulting from degradation of lipoprotein triglycerides. Cosmid clones containing the mouse MGL gene were isolated from a genomic library using the coding region of the mouse MGL cDNA as probe. Characterization of the clones obtained revealed that the mouse gene contains the coding sequence for MGL on seven exons, including a large terminal exon of approximately 2.6 kb containing the stop codon and the complete 3' untranslated region. Two different 5' leader sequences, diverging 21 bp upstream of the predicted translation initiation codon, were isolated from a mouse adipocyte cDNA library. Western blot analysis of different mouse tissues revealed protein size heterogeneities. The amino acid sequence derived from human MGL cDNA clones showed 84% identity with mouse MGL. The mouse MGL gene was mapped to chromosome 6 in a region with known homology to human chromosome 3q21.
        
Title: cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C Ref: Journal of Biological Chemistry, 272:27218, 1997 : PubMed
Monoglyceride lipase catalyzes the last step in the hydrolysis of stored triglycerides in the adipocyte and presumably also complements the action of lipoprotein lipase in degrading triglycerides from chylomicrons and very low density lipoproteins. Monoglyceride lipase was cloned from a mouse adipocyte cDNA library. The predicted amino acid sequence consisted of 302 amino acids, corresponding to a molecular weight of 33,218. The sequence showed no extensive homology to other known mammalian proteins, but a number of microbial proteins, including two bacterial lysophospholipases and a family of haloperoxidases, were found to be distantly related to this enzyme. By means of multiple sequence alignment and secondary structure prediction, the structural elements in monoglyceride lipase, as well as the putative catalytic triad, were identified. The residues of the proposed triad, Ser-122, in a GXSXG motif, Asp-239, and His-269, were confirmed by site-directed mutagenesis experiments. Northern blot analysis revealed that monoglyceride lipase is ubiquitously expressed among tissues, with a transcript size of about 4 kilobases.