Catalyzes the hydrolysis of N-formyl-L-kynurenine to L-kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. Q8R1K6 differences in 3' and 5' alternative splicings?
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Glires: NE > Rodentia: NE > Myomorpha: NE > Muroidea: NE > Muridae: NE > Murinae: NE > Mus [genus]: NE > Mus [subgenus]: NE > Mus musculus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAFPSLSAGQNPWRNLSSEELEKQYSPSRWVIHTKPEEVVGNFVQIGSQA TQKARATRRNQLDVPYGDGEGEKLDIYFPDEDSKAFPLFLFLHGGYWQSG SKDDSAFMVNPLTAQGIVVVIVAYDIAPKGTLDQMVDQVTRSVVFLQRRY PSNEGIYLCGHSAGAHLAAMVLLARWTKHGVTPNLQGFLLVSGIYDLEPL IATSQNDPLRMTLEDAQRNSPQRHLDVVPAQPVAPACPVLVLVGQHDSPE FHRQSKEFYETLLRVGWKASFQQLRGVDHFDIIENLTREDDVLTQIILKT VFQKL
The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.
        
Title: Alternate activation of two divergently transcribed mouse genes from a bidirectional promoter is linked to changes in histone modification Schuettengruber B, Doetzlhofer A, Kroboth K, Wintersberger E, Seiser C Ref: Journal of Biological Chemistry, 278:1784, 2003 : PubMed
Thymidine kinase (TK) is a growth factor-inducible enzyme that is highly expressed in proliferating mammalian cells. Expression of mouse TK mRNA is controlled by transcriptional and posttranscriptional mechanisms including antisense transcription. Here we report the identification of a novel gene that is divergently transcribed from the bidirectional TK promoter. This gene encodes kynurenine formamidase (KF), an enzyme of the tryptophan metabolism. Whereas the TK gene is induced upon interleukin-2-mediated activation of resting T cells, the KF gene becomes simultaneously repressed. The TK promoter is regulated by E2F, SP1, histone acetyltransferases, and deacetylases. The binding site for the growth-regulated transcription factor E2F is beneficial for TK promoter activity but not required for KF expression. In contrast, the SP1 binding site is crucial for transcription in both directions. Inhibition of histone deacetylases by trichostatin A leads to increased histone acetylation at the TK/KF promoter and thereby to selective activation of the TK promoter and simultaneous shut-off of KF expression. Similarly, TK gene activation by interleukin-2 is linked to histone hyperacetylation, whereas KF expression correlates with reduced histone acetylation. The KF gene is the rare example of a mammalian gene whose expression is linked to histone hypoacetylation at its promoter.
        
Title: Kynurenine formamidase: determination of primary structure and modeling-based prediction of tertiary structure and catalytic triad Pabarcus MK, Casida JE Ref: Biochimica & Biophysica Acta, 1596:201, 2002 : PubMed
Kynurenine formamidase (KFase) (EC 3.5.1.9) hydrolyzes N-formyl-L-kynurenine, an obligatory step in the conversion of tryptophan to nicotinic acid. Low KFase activity in chicken embryos, from inhibition by organophosphorus insecticides and their metabolites such as diazoxon, leads to marked developmental abnormalities. While KFase was purportedly isolated previously, the structure and residues important for catalysis and inhibition were not established. KFase was isolated here from mouse liver cytosol by (NH4)2SO4 precipitation and three FPLC steps (resulting in 221-fold increase in specific activity for N-formyl-L-kynurenine hydrolysis) followed by conversion to [3H]diethylphosphoryl-KFase and finally isolation by C4 reverse-phase high-performance liquid chromatography. Determination of tryptic fragment amino acid sequences and cDNA cloning produced a new 305-amino-acid protein sequence. Although an amidase by function, the primary structure of KFase lacks the amidase signature sequence and is more similar to esterases and lipases. Sequence profile analysis indicates KFase is related to the esterase/lipase/thioesterase family containing the conserved active-site serine sequence GXSXG. The alpha/beta-hydrolase fold is suggested for KFase by its primary sequence and predicted secondary conformation. A three-dimensional model based on the structures of homologous carboxylesterase EST2 and brefeldin A esterase implicates Ser162, Asp247 and His279 as the active site triad.