(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Glires: NE > Rodentia: NE > Myomorpha: NE > Muroidea: NE > Muridae: NE > Murinae: NE > Mus [genus]: NE > Mus [subgenus]: NE > Mus musculus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MPAPAPALLCLALALASAQPSPPPPPPFPVVATNYGKLRGVRAALPGDVL GPVTQFLGVPYAAPPTGERRFQPPEPPSSWAGVRDATRFAPVCPQHLDER ALLRDRLPAWFAANLDAIAAYVQDQSEDCLYLNLYVPGGANGKKMADDVT GNDHGDDQDSRDPGVGGAAAAAARKPVMVYIHGGSYMEGTANIVDGSVLA SYGDVIVVTVNYRLGVLGFLSTGDQAAKGNYGLLDQIQALRWVEENAGAF GGDPDRVTVFGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNY QPARYARALGERVGCATPDPGSPPGSPPGWDSASLVSCLRGKAAGELARA RVTPATYHVAFGPTVDGDVIPDDPQILMEQGEFLNYDIMLGVNQGEGARF VDGLGGGHDGGYGGYGGGYGGGVEDDEVQDGGPDGAAGGVSAGEFDLAVS GFINDLYGRPEGRGDALRETVKFMYTDWADRDSPEARRKTLVALFTDHQW VAPAVATADLHARYGSPTYFYAFYHRCHGGGGGGGGVDGVAGGVAGGVGG EEARPAWADAAHGDEVPYVFGVPMAGPGDVFGCNFSRNDVMLSAVVMTYW TNFAKTGDPNQPVAQDTRFVHTRPNRFEEVAWAKYDPRGQLYLHIGLRPR VRDHYRAAKVAFWLELVPHLHGLAADPGAYLSAAATRAAPSGDPDRDPGG GGGGRRRPRPATRRPAVMTSSSMASGSGMTSSSGSGMTSSSGSSASAVLI ETRRDYSTELSVTIAVGASLLFLNVLAFAALYYKKDKRRHETHRRPPPPR PPQAPPSAAAADRNPRPDPGPAGRRGGECGAVVTAMAAEASAGGLGHDGV GGVGVGGVIGGVAGLRLACPPDYALTLRRSPDDVPRAGAGPGAMTLIPGA LGGGGGGAVHGFNTFGSGVGVAGVAGVATSQAGPGLPHGHSTTRV
Variants in genes encoding synaptic adhesion proteins of the neuroligin family, most notably neuroligin-4, are a significant cause of autism spectrum disorders in humans. While human neuroligin-4 is encoded by two genes, NLGN4X and NLGN4Y, that are localized on the X-specific and male-specific regions of the two sex chromosomes, the chromosomal localization and full genomic sequence of the mouse Nlgn4 gene remain elusive. Here, we analyzed the neuroligin-4 genes of numerous rodent species by direct sequencing and bioinformatics, generated complete drafts of multiple rodent neuroligin-4 genes, and examined their evolution. Surprisingly, we find that the murine Nlgn4 gene is localized to the pseudoautosomal region (PAR) of the sex chromosomes, different from its human orthologues. We show that the sequence differences between various neuroligin-4 proteins are restricted to hotspots in which rodent neuroligin-4 proteins contain short repetitive sequence insertions compared to neuroligin-4 proteins from other species, whereas all other protein sequences are highly conserved. Evolutionarily, these sequence insertions initiate in the clade eumuroidea of the infra-order myomorpha, and are additionally associated with dramatic changes in non-coding sequences and gene size. Importantly, these changes are not exclusively restricted to neuroligin-4 genes but reflect major evolutionary changes that substantially altered or even deleted genes from the PARs of both sex chromosomes. Our results show that despite the fact that the PAR in rodents and the neuroligin-4 genes within the rodent PAR underwent massive evolutionary changes, neuroligin-4 proteins maintained a highly conserved core structure, consistent with a substantial evolutionary pressure preserving its physiological function.
Neuroligins (NLs) are postsynaptic cell-adhesion molecules that are implicated in humans in autism spectrum disorders because the genes encoding NL3 and NL4 are mutated in rare cases of familial autism. NLs are highly conserved evolutionarily, except that no NL4 was detected in the currently available mouse genome sequence assemblies. We now demonstrate that mice express a distant NL4 variant that rapidly evolved from other mammalian NL4 genes and that exhibits sequence variations even between different mouse strains. Despite its divergence, mouse NL4 binds neurexins and is transported into dendritic spines, suggesting that the core properties of NLs are retained in this divergent NL isoform. The selectively rapid evolution of NL4 in mice suggests that its function in the brain is under less stringent control than that of other NLs, shedding light on why its mutation in autism spectrum disorder patients is not lethal, but instead leads to a discrete developmental brain disorder.
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
Variants in genes encoding synaptic adhesion proteins of the neuroligin family, most notably neuroligin-4, are a significant cause of autism spectrum disorders in humans. While human neuroligin-4 is encoded by two genes, NLGN4X and NLGN4Y, that are localized on the X-specific and male-specific regions of the two sex chromosomes, the chromosomal localization and full genomic sequence of the mouse Nlgn4 gene remain elusive. Here, we analyzed the neuroligin-4 genes of numerous rodent species by direct sequencing and bioinformatics, generated complete drafts of multiple rodent neuroligin-4 genes, and examined their evolution. Surprisingly, we find that the murine Nlgn4 gene is localized to the pseudoautosomal region (PAR) of the sex chromosomes, different from its human orthologues. We show that the sequence differences between various neuroligin-4 proteins are restricted to hotspots in which rodent neuroligin-4 proteins contain short repetitive sequence insertions compared to neuroligin-4 proteins from other species, whereas all other protein sequences are highly conserved. Evolutionarily, these sequence insertions initiate in the clade eumuroidea of the infra-order myomorpha, and are additionally associated with dramatic changes in non-coding sequences and gene size. Importantly, these changes are not exclusively restricted to neuroligin-4 genes but reflect major evolutionary changes that substantially altered or even deleted genes from the PARs of both sex chromosomes. Our results show that despite the fact that the PAR in rodents and the neuroligin-4 genes within the rodent PAR underwent massive evolutionary changes, neuroligin-4 proteins maintained a highly conserved core structure, consistent with a substantial evolutionary pressure preserving its physiological function.
        
Title: Autism-associated neuroligin-4 mutation selectively impairs glycinergic synaptic transmission in mouse brainstem synapses Zhang B, Gokce O, Hale WD, Brose N, Sudhof TC Ref: J Exp Med, 215:1543, 2018 : PubMed
In human patients, loss-of-function mutations of the postsynaptic cell-adhesion molecule neuroligin-4 were repeatedly identified as monogenetic causes of autism. In mice, neuroligin-4 deletions caused autism-related behavioral impairments and subtle changes in synaptic transmission, and neuroligin-4 was found, at least in part, at glycinergic synapses. However, low expression levels precluded a comprehensive analysis of neuroligin-4 localization, and overexpression of neuroligin-4 puzzlingly impaired excitatory but not inhibitory synaptic function. As a result, the function of neuroligin-4 remains unclear, as does its relation to other neuroligins. To clarify these issues, we systematically examined the function of neuroligin-4, focusing on excitatory and inhibitory inputs to defined projection neurons of the mouse brainstem as central model synapses. We show that loss of neuroligin-4 causes a profound impairment of glycinergic but not glutamatergic synaptic transmission and a decrease in glycinergic synapse numbers. Thus, neuroligin-4 is essential for the organization and/or maintenance of glycinergic synapses.
Neuroligins (NLs) are postsynaptic cell-adhesion molecules that are implicated in humans in autism spectrum disorders because the genes encoding NL3 and NL4 are mutated in rare cases of familial autism. NLs are highly conserved evolutionarily, except that no NL4 was detected in the currently available mouse genome sequence assemblies. We now demonstrate that mice express a distant NL4 variant that rapidly evolved from other mammalian NL4 genes and that exhibits sequence variations even between different mouse strains. Despite its divergence, mouse NL4 binds neurexins and is transported into dendritic spines, suggesting that the core properties of NLs are retained in this divergent NL isoform. The selectively rapid evolution of NL4 in mice suggests that its function in the brain is under less stringent control than that of other NLs, shedding light on why its mutation in autism spectrum disorder patients is not lethal, but instead leads to a discrete developmental brain disorder.
Autism spectrum conditions (ASCs) are heritable conditions characterized by impaired reciprocal social interactions, deficits in language acquisition, and repetitive and restricted behaviors and interests. In addition to more complex genetic susceptibilities, even mutation of a single gene can lead to ASC. Several such monogenic heritable ASC forms are caused by loss-of-function mutations in genes encoding regulators of synapse function in neurons, including NLGN4. We report that mice with a loss-of-function mutation in the murine NLGN4 ortholog Nlgn4, which encodes the synaptic cell adhesion protein Neuroligin-4, exhibit highly selective deficits in reciprocal social interactions and communication that are reminiscent of ASCs in humans. Our findings indicate that a protein network that regulates the maturation and function of synapses in the brain is at the core of a major ASC susceptibility pathway, and establish Neuroligin-4-deficient mice as genetic models for the exploration of the complex neurobiological disorders in ASCs.
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.