(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Pseudomonadales: NE > Moraxellaceae: NE > Moraxella: NE > Moraxella sp.: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MFIMIKKSELAKAIIVTGALVFSIPTLAEVTLSETTVSSIKSEATVSSTK KALPATPSDCIADSKITAVALSDTRDNGPFSIRTKRISRQSAKGFGGGTI HYPTNASGCGLLGAIAVVPGYVSYENSIKWWGPRLASWGFVVITINTNSI YDDPDSRAAQLNAALDNMIADDTVGSMIDPKRLGAIGWSMGGGGALKLAT ERSTVRAIMPLAPYHDKSYGEVKTPTLVIACEDDRIAETKKYANAFYKNA IGPKMKVEVNNGSHFCPSYRFNEILLSKPGIAWMQRYINNDTRFDKFLCA NENYSKSPRISAYDYKDCP
Polyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60 degreesC to 70 degreesC for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase IsPETase from the mesophilic bacterium Ideonella sakaiensis has also been reported. We show that polyester hydrolases from the Antarctic bacteria Moraxella sp. strain TA144 (Mors1) and Oleispira antarctica RB-8 (OaCut) were able to hydrolyze the aliphatic polyester polycaprolactone as well as the aromatic polyester PET at a reaction temperature of 25 degreesC. Mors1 caused a weight loss of amorphous PET films and thus constitutes a PET-degrading psychrophilic enzyme. Comparative modelling of Mors1 showed that the amino acid composition of its active site resembled both thermophilic and mesophilic PET hydrolases. Lastly, bioinformatic analysis of Antarctic metagenomic samples demonstrated that members of the Moraxellaceae family carry candidate genes coding for further potential psychrophilic PET hydrolases. IMPORTANCE A myriad of consumer products contains polyethylene terephthalate (PET), a plastic that has accumulated as waste in the environment due to its long-term stability and poor waste management. One promising solution is the enzymatic biodegradation of PET, with most known enzymes only catalyzing this process at high temperatures. Here, we bioinformatically identified and biochemically characterized an enzyme from an Antarctic organism that degrades PET at 25 degreesC with similar efficiency than the few PET-degrading enzymes active at moderate temperatures. Reasoning that Antarctica harbors other PET-degrading enzymes, we analyzed available data from Antarctic metagenomic samples and successfully identified other potential enzymes. Our findings contribute to increasing the repertoire of known PET-degrading enzymes that are currently being considered as biocatalysts for the biological recycling of plastic waste.
        
Title: New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR Ref: Applied Environmental Microbiology, 84:e2773, 2018 : PubMed
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used nowadays. Unfortunately, the polymers accumulate in nature and until now, no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly alpha/beta-hydrolases like cutinases and related enzymes (E.C. 3.1.-). Currently, only a small number of such enzymes are well characterized. Within this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 GB of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the IMG data base detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. Thereby, two novel and thermostable enzymes with high potential for downstream application were in part characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phylum of Actinobacteria, Proteobacteria and Bacteroidetes Within the Proteobacteria, the Beta-, Delta- and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum of the Bacteroidetes appear to be the main host of PET hydrolase genes rather than Actinobacteria or Proteobacteria as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although few PET hydrolases are already known it is still unknown how frequent they appear and which main bacterial phyla they are affiliated with. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed are occurring at very low frequencies in the environment. Further it was possible to link them to phyla which were previously unknown to harbor such enzymes. This work contributes novel knowledge to the phylogenetic relationship, the recent evolution and the global distribution of PET hydrolases. Finally, we describe biochemical traits of four novel PET hydrolases.
        
Title: Sequence of a lipase gene from the antarctic psychrotroph Moraxella TA144 Feller G, Thiry M, Gerday C Ref: Nucleic Acids Research, 18:6431, 1990 : PubMed
The uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an eco-friendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling. In the present study, a barely studied psychrophilic enzyme (MoPE) from the Antractic bacterium Moraxella sp. was heterologously expressed, characterized and its potential in polymer degradation was further investigated. Based on its amino acid composition and structure, MoPE resembled PET-degrading enzymes, sharing features from both mesophilic and thermophilic homologues. MoPE hydrolyzes non-biodegradable plastics, such as polyethylene terephthalate and polyurethane, as well as biodegradable synthetic polyesters, such as polycaprolactone, polyhydroxy butyrate, polybutylene succinate and polylactic acid. The mass fraction crystallinity of the aliphatic polymers tested ranged from 11% to 64% highlighting the potential of the enzyme to hydrolyze highly crystalline plastics. MoPE was able to degrade different types of amorphous and semi-crystalline PET, releasing water-soluble monomers and showed synergy with a feruloyl esterase of the tannase family for the release of terephthalic acid. Based on the above, MoPE was characterized as a versatile psychrophilic polyesterase demonstrating a broad-range plastics degradation potential.
Polyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60 degreesC to 70 degreesC for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase IsPETase from the mesophilic bacterium Ideonella sakaiensis has also been reported. We show that polyester hydrolases from the Antarctic bacteria Moraxella sp. strain TA144 (Mors1) and Oleispira antarctica RB-8 (OaCut) were able to hydrolyze the aliphatic polyester polycaprolactone as well as the aromatic polyester PET at a reaction temperature of 25 degreesC. Mors1 caused a weight loss of amorphous PET films and thus constitutes a PET-degrading psychrophilic enzyme. Comparative modelling of Mors1 showed that the amino acid composition of its active site resembled both thermophilic and mesophilic PET hydrolases. Lastly, bioinformatic analysis of Antarctic metagenomic samples demonstrated that members of the Moraxellaceae family carry candidate genes coding for further potential psychrophilic PET hydrolases. IMPORTANCE A myriad of consumer products contains polyethylene terephthalate (PET), a plastic that has accumulated as waste in the environment due to its long-term stability and poor waste management. One promising solution is the enzymatic biodegradation of PET, with most known enzymes only catalyzing this process at high temperatures. Here, we bioinformatically identified and biochemically characterized an enzyme from an Antarctic organism that degrades PET at 25 degreesC with similar efficiency than the few PET-degrading enzymes active at moderate temperatures. Reasoning that Antarctica harbors other PET-degrading enzymes, we analyzed available data from Antarctic metagenomic samples and successfully identified other potential enzymes. Our findings contribute to increasing the repertoire of known PET-degrading enzymes that are currently being considered as biocatalysts for the biological recycling of plastic waste.
        
Title: New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR Ref: Applied Environmental Microbiology, 84:e2773, 2018 : PubMed
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used nowadays. Unfortunately, the polymers accumulate in nature and until now, no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly alpha/beta-hydrolases like cutinases and related enzymes (E.C. 3.1.-). Currently, only a small number of such enzymes are well characterized. Within this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 GB of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the IMG data base detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. Thereby, two novel and thermostable enzymes with high potential for downstream application were in part characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phylum of Actinobacteria, Proteobacteria and Bacteroidetes Within the Proteobacteria, the Beta-, Delta- and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum of the Bacteroidetes appear to be the main host of PET hydrolase genes rather than Actinobacteria or Proteobacteria as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although few PET hydrolases are already known it is still unknown how frequent they appear and which main bacterial phyla they are affiliated with. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed are occurring at very low frequencies in the environment. Further it was possible to link them to phyla which were previously unknown to harbor such enzymes. This work contributes novel knowledge to the phylogenetic relationship, the recent evolution and the global distribution of PET hydrolases. Finally, we describe biochemical traits of four novel PET hydrolases.
        
Title: Sequence of a lipase gene from the antarctic psychrotroph Moraxella TA144 Feller G, Thiry M, Gerday C Ref: Nucleic Acids Research, 18:6431, 1990 : PubMed