(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Euglenozoa: NE > Kinetoplastida: NE > Trypanosomatidae: NE > Leishmaniinae: NE > Leishmania [genus]: NE > Leishmania [subgenus]: NE > Leishmania major species complex: NE > Leishmania major: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Leishmania major strain Friedlin: N, E.
Leishmania mexicana MHOM/GT/2001/U1103: N, E.
Leishmania donovani BPK282A1: N, E.
Leishmania amazonensis: N, E.
Leishmania braziliensis: N, E.
Leishmania braziliensis MHOM/BR/75/M2904: N, E.
Leishmania infantum: N, E.
Leishmania donovani: N, E.
Molecular evidence
Database
No mutation 1 structure: 2XE4: Crystal Structure of Leishmania Major Oligopeptidase B No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSSDSSVAASAQPPIAAKKPHRVKFGYVEGEDRGPNPMNPPRYREDPYFW MRDDDRKDPAVIEHLNKEKVYFQARSADIAQLRDDIYAEHISHINEDDMS APYVYGKYRYYTREVKGKPYKIYCRVFTDKEPGDVAAEEVIIDVNQVAEG KAFCDVMEVKPAPPEHDLVAFSVDMSGNEVYTIEFKRISDPSQTIADKVS GTNGEIVWGPDHTSLFYVTKDETLRENKVWRHVMGKLQSEDVCLYEEHNP LFSAFMYKAADTNTLCIGSQSPETAEVHLLDLRKGNAHNTLEIVRPREKG VRYDVQMHGTSHLVILTNEGGAVNHKLLIAPRGQPSDWSHVLVDHSEDVF MESIAVRSNYLVVAGRRAGLTRIWTMMADSQDGVFQAGTGLREVVMEEPI FTVHLVESQMLEYEEPTFRMEYSSLATPNTWFDVSPQDTLAPLVKVREVG GGFDAANYKVERRFATAPDQTKIPLSVVCHKDLDMSQPQPCMLYGYGSYG LSMDPQFSIQHLPYCDRGMIFAIAHIRGGSELGRAWYEIGAKYLTKRNTF SDFIAAAEFLVNAKLTTPSQLACEGRSAGGLLMGAVLNMRPDLFKVALAG VPFVDVMTTMCDPSIPLTTGEWEEWGNPNEYKYYDYMLSYSPMDNVRAQE YPNIMVQCGLHDPRVAYWEPAKWVSKLRECKTDNNEILLNIDMESGHFSA KDRYKFWKESAIQQAFVCKHLKSTVRLLVRR
References
3 moreTitle: Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC Ref: Journal of Biological Chemistry, 285:39249, 2010 : PubMed
Oligopeptidase B (OPB) is a serine peptidase with dibasic substrate specificity. It is found in bacteria, plants, and trypanosomatid pathogens, where it has been identified as a virulence factor and potential drug target. In this study we expressed active recombinant Leishmania major OPB and provide the first structure of an oligopeptidase B at high resolution. The crystallographic study reveals that OPB comprises two domains, a catalytic and a propeller domain, linked together by a hinge region. The structure has been determined in complex with the oligopeptide, protease-inhibitor antipain, giving detailed information on the enzyme active site and extended substrate binding pockets. It shows that Glu-621 plays a critical role in the S1 binding pocket and, along with Phe-603, is largely responsible for the enzyme substrate specificity in P1. In the S2 binding pocket, Tyr-499 was shown to be important for substrate stability. The structure also allowed an investigation into the function of residues highlighted in other studies including Glu-623, which was predicted to be involved in the S1 binding pocket but is found forming an inter-domain hydrogen bond. Additional important salt bridges/hydrogen bonds between the two domains were observed, highlighting the significance of the domain interface in OPB. This work provides a foundation for the study of the role of OPBs as virulence factors in trypanosomatids. It could facilitate the development of specific OPB inhibitors with therapeutic potential by exploiting its unique substrate recognition properties as well as providing a model for OPBs in general.
Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.
Trypanosoma brucei contains a soluble serine oligopeptidase (OP-Tb) that is released into the host bloodstream during infection, where it has been postulated to participate in the pathogenesis of African trypanosomiasis. Here, we report the identification of a single copy gene encoding the T. brucei oligopeptidase and a homologue from the related trypanosomatid pathogen Leishmania major. The enzymes encoded by these genes belong to an emerging subgroup of the prolyl oligopeptidase family of serine hydrolases, referred to as oligopeptidase B. The trypanosomatid oligopeptidases share 70% amino acid sequence identity with oligopeptidase B from the intracellular pathogen Trypanosoma cruzi, which has a demonstrated role in mammalian host cell signaling and invasion. OP-Tb exhibited no activity toward the prolyl oligopeptidase substrate H-Gly-Pro-7-amido-4-methylcoumarin. Instead, it had activity toward substrates of trypsin-like enzymes, particularly those that have basic amino acids in both P(1) and P(2) (e.g. benzyloxycarbonyl-Arg-Arg-7-amido-4-methylcoumarin k(cat)/K(m) = 529 s(-1) microM(-1)). The activity of OP-Tb was enhanced by reducing agents and by polyamines, suggesting that these agents may act as in vivo regulators of OP-Tb activity. This study provides the basis of the characterization of a novel subgroup of serine oligopeptidases from kinetoplastid protozoa with potential roles in pathogenesis.
Proteases are a ubiquitous group of enzymes that play key roles in the life cycle of parasites, in the host-parasite relationship, and in the pathogenesis of parasitic diseases. Furthermore, proteases are targets for the development of new anti-parasitic therapy. Protozoan parasites like Leishmania predominantly express Clan CA cysteine proteases for key life cycle functions. It was therefore unexpected to find a high level of serine protease activity expressed by Leishmania donovani. Purification of this activity followed by mass spectrometry identified oligopeptidase B (OPB; Clan SC, family S9A) as the responsible enzyme. This was confirmed by gene knock-out of OPB, which resulted in the disappearance of the detected serine protease activity of Leishmania extracts. To delineate the specific role of OPB in parasite physiology, proteomic analysis was carried out on OPB(-/-) versus wild type parasites. Four protein species were significantly elevated in OPB(-/-) parasites, and all four were identified by mass spectrometry as enolase. This increased enolase was enzymatically inactive and associated with the parasite membrane. Aside from its classic role in carbohydrate metabolism, enolase was recently found to localize to membranes, where it binds host plasminogen and functions as a virulence factor for several pathogens. As expected, there was a striking alteration in macrophage responses to Leishmania when OPB was deleted. Whereas wild type parasites elicited little, if any, response from infected macrophages, OPB(-/-) parasites induced a massive up-regulation in gene transcription. Additionally, these OPB(-/-) parasites displayed decreased virulence in the murine footpad infection model.
        
Title: Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC Ref: Journal of Biological Chemistry, 285:39249, 2010 : PubMed
Oligopeptidase B (OPB) is a serine peptidase with dibasic substrate specificity. It is found in bacteria, plants, and trypanosomatid pathogens, where it has been identified as a virulence factor and potential drug target. In this study we expressed active recombinant Leishmania major OPB and provide the first structure of an oligopeptidase B at high resolution. The crystallographic study reveals that OPB comprises two domains, a catalytic and a propeller domain, linked together by a hinge region. The structure has been determined in complex with the oligopeptide, protease-inhibitor antipain, giving detailed information on the enzyme active site and extended substrate binding pockets. It shows that Glu-621 plays a critical role in the S1 binding pocket and, along with Phe-603, is largely responsible for the enzyme substrate specificity in P1. In the S2 binding pocket, Tyr-499 was shown to be important for substrate stability. The structure also allowed an investigation into the function of residues highlighted in other studies including Glu-623, which was predicted to be involved in the S1 binding pocket but is found forming an inter-domain hydrogen bond. Additional important salt bridges/hydrogen bonds between the two domains were observed, highlighting the significance of the domain interface in OPB. This work provides a foundation for the study of the role of OPBs as virulence factors in trypanosomatids. It could facilitate the development of specific OPB inhibitors with therapeutic potential by exploiting its unique substrate recognition properties as well as providing a model for OPBs in general.
Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.
Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. A complete open reading frame of oligopeptidase B from Leishmania amazonensis was amplified with polymerase chain reaction with gradient annealing temperatures using primers designed for the oligopeptidase B gene from L. major. The 2,196-bp fragment coded for a protein of 731 amino acids with a predicted molecular mass of 83.49 KDa. The encoded protein (La_OpB) shares a 90% identity with oligopeptidases of L. major and L. infantum, 84% with L. braziliensis, and approximately 62 identity with Trypanosoma peptidases. The oligopeptidase B gene is expressed in all cycle stages of L. amazonensis. The three dimensional model of La_OpB was obtained by homology modeling based on the structure of prolyl oligopeptidases. We mapped a La_OpB model that presents a greater negative charge than prolyl oligopeptidases; our results suggest a difference in the S2 subsite when compared to oligopeptidases B from Trypanosoma and bacterial oligopeptidases B. The La_OpB model serves as a starting point for its exploration as a potential target source for a rational chemotherapy.
Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.
Trypanosoma brucei contains a soluble serine oligopeptidase (OP-Tb) that is released into the host bloodstream during infection, where it has been postulated to participate in the pathogenesis of African trypanosomiasis. Here, we report the identification of a single copy gene encoding the T. brucei oligopeptidase and a homologue from the related trypanosomatid pathogen Leishmania major. The enzymes encoded by these genes belong to an emerging subgroup of the prolyl oligopeptidase family of serine hydrolases, referred to as oligopeptidase B. The trypanosomatid oligopeptidases share 70% amino acid sequence identity with oligopeptidase B from the intracellular pathogen Trypanosoma cruzi, which has a demonstrated role in mammalian host cell signaling and invasion. OP-Tb exhibited no activity toward the prolyl oligopeptidase substrate H-Gly-Pro-7-amido-4-methylcoumarin. Instead, it had activity toward substrates of trypsin-like enzymes, particularly those that have basic amino acids in both P(1) and P(2) (e.g. benzyloxycarbonyl-Arg-Arg-7-amido-4-methylcoumarin k(cat)/K(m) = 529 s(-1) microM(-1)). The activity of OP-Tb was enhanced by reducing agents and by polyamines, suggesting that these agents may act as in vivo regulators of OP-Tb activity. This study provides the basis of the characterization of a novel subgroup of serine oligopeptidases from kinetoplastid protozoa with potential roles in pathogenesis.