(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Lactobacillales: NE > Lactobacillaceae: NE > Lactobacillus: NE > Lactobacillus plantarum: NE
6_AlphaBeta_hydrolase : lacpl-LP.1124Lactobacillus plantarum cell surface hydrolase, lacpl-LP.1774Lactobacillus plantarum hydrolase (putative). A85-EsteraseD-FGH : lacpl-EST1Lactobacillus plantarum (and strain JDM1) acetylesterase (EC 3.1.-), lacpl-EST2Lactobacillus plantarum, acetylesterase (EC 3.1.-) Acetyl esterase (Promiscuous) estA lp_3505. AlphaBeta_hydrolase : lacpl-LP.0461Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative), lacpl-LP.2620Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative), lacpl-LP.3265Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative), lacpl-LP.3393Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative). BD-FAE : lacpl-Est.1092Lactobacillus plantarum JDM1 Esterase/lipase, lacpl-LP.1002 Lactobacillus plantarum lipase/esterase (putative), lacpl-LP.2923 Lactobacillus plantarum Cest-2923 (lp_2923) lipase/esterase, lacpl-LP.3561Lactobacillus plantarum lipase/esterase (putative) LP_3561, lacpl-LP.3562Lactobacillus plantarum lipase/esterase (putative) LP_3562. CarbLipBact_1 : lacpl-LP.0796 Lactobacillus plantarum; Lactobacillus pentosus, carboxylesterase (EC 3.1.1.1). Duf_915 : lacpl-LP.0618Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative), lacpl-LP.1156Lactobacillus plantarum cell surface hydrolase (putative), lacpl-LP.1165 Lactobacillus plantarum WCFS1 cell surface hydrolase (putative), lacpl-LP.1935Lactobacillus plantarum cell surface hydrolase (putative), lacpl-LP.2519Lactobacillus plantarum cell surface hydrolase (putative), lacpl-LP.2586Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative), lacpl-LP.2737Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative), lacpl-LP.3205Lactobacillus plantarum hypothetical protein, lacpl-LP.3341Lactobacillus plantarum cell surface hydrolase, membrane-bound (putative). FAE-Bacterial-promiscuous : lacpl-LP.2953Lactobacillus plantarum esterase (putative). Haloperoxidase : lacpl-HPOLactobacillus plantarum (and strain JDM1) halo peroxidase (EC 1.11.1.-). Hormone-sensitive_lipase_like : lacpl-LP.0973 Lactobacillus plantarum lipase/esterase. Lactobacillus_peptidase : lacpl-pepxLactobacillus plantarum peptidase (x-prolyl-dipeptidyl aminopeptidase) (x-pdap). Proline_iminopeptidase : lacpl-PEPILactobacillus plantarum prolyl aminopeptidase (EC 3.4.11.5), lacpl-PEPR1Lactobacillus plantarum prolyl aminopeptidase (EC 3.4.11.5), lacpl-PEPR2Lactobacillus plantarum (and strains JDM1; DOMLa) prolyl aminopeptidase (EC 3.4.11.5), lacps-e1ttj7Lactobacillus plantarum (strain ST-III). Prolyl aminopeptidase. yjfP_esterase-like : lacpl-LP.1760Lactobacillus plantarum lipase/esterase (putative), lacpl-LP.2631Lactobacillus plantarum lipase/esterase (putative)
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Lactobacillus plantarum subsp. plantarum ATCC 14917: N, E.
Lactobacillus plantarum JDM1: N, E.
Lactobacillus plantarum ZJ316: N, E.
Lactobacillus plantarum 2165: N, E.
Lactobacillus plantarum subsp. plantarum P-8: N, E.
Lactobacillus plantarum 16: N, E.
Lactobacillus plantarum 4_3: N, E.
Lactobacillus plantarum 2025: N, E.
Lactobacillus plantarum UCMA 3037: N, E.
Lactobacillus plantarum IPLA88: N, E.
Lactobacillus plantarum WJL: N, E.
Lactobacillus plantarum subsp. plantarum ST-III: N, E.
Lactobacillus plantarum WCFS1: N, E.
Lactobacillus plantarum subsp. plantarum NC8: N, E.
Lactobacillus plantarum subsp. plantarum ATCC 14917 = JCM 1149 = CGMCC 1.2437: N, E.
Lactobacillus plantarum CMPG5300: N, E.
Lactobacillus plantarum DOMLa: N, E.
Lactobacillus plantarum AY01: N, E.
Lactobacillus plantarum EGD-AQ4: N, E.
Molecular evidence
Database
No mutation 10 structures(e.g. : 3WA6, 3WA7, 4J0C... more)(less) 3WA6: Crystal structure of tannase from from Lactobacillus plantarum in the orthorhombic crystal, 3WA7: Crystal structure of selenomethionine-labeled tannase from Lactobacillus plantarum in the orthorhombic crystal, 4J0C: tannin acyl hydrolase from Lactobacillus plantarum (native structure), 4J0D: tannin acyl hydrolase from Lactobacillus plantarum (Cadmium), 4J0G: tannin acyl hydrolase (mercury derivative), 4J0H: tannin acyl hydrolase in complex with gallic acid, 4J0I: tannin acyl hydrolase in complex with 3,4-dihydroxybenzoate, 4J0J: tannin acyl hydrolase in complex with ethyl 3,5-dihydroxybenzoate, 4J0K: tannin acyl hydrolase in complex with ethyl gallate, 4JUI: Crystal structure of tannase from from Lactobacillus plantarum No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSNRLIFDADWLVPEQVQVAGQAIQYYAARNIQYVQHPVAAIQVLNVFVP AAYLHGSSVNGYQRATAPILMPNTVGGYLPGPADDPQRVTWPTNAGTIQQ ALKRGYVVVAAGIRGRTTVDKSGQRVGQAPAFIVDMKAAIRYVKYNQGRL PGDANRIITNGTSAGGATSALAGASGNSAYFEPALTALGAAPATDDIFAV SAYCPIHNLEHADMAYEWQFNGINDWHRYQPVAGTTKNGRPKFEPVSGQL TVEEQALSLALKAQFSTYLNQLKLTASDGTHLTLNEAGMGSFRDVVRQLL ISSAQTAFDQGTDIHKYAGFVVTGNQVTDLDLSAYLKSLTRMKAVPAFDQ LDLTSPENNLFGDATAKAKHFTALAQTRSTVTAQLADAELIQAINPLSYL TTTSSRVAKHWRIRHGAADRDTSFAIPIILAIMLENHGYGIDFALPWDIP HSGDYDLGDLFSWIDGLCQ
Tannin acylhydrolase (EC 3.1.1.20) referred commonly as tannase catalyzes the hydrolysis of the galloyl ester bond of tannins to release gallic acid. Although the enzyme is useful for various industries, the tertiary structure is not yet determined. In this study, we determined the crystal structure of tannase produced by Lactobacillus plantarum. The tannase structure belongs to a member of alpha/beta-hydrolase superfamily with an additional "lid" domain. A glycerol molecule derived from cryoprotectant solution was accommodated into the tannase active site. The binding manner of glycerol to tannase seems to be similar to that of the galloyl moiety in the substrate. Proteins 2013; 81:2052-2058. (c) 2013 Wiley Periodicals, Inc.
Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an alpha/beta structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme.
        
Title: Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum. Wu M, Peng X, Wen H, Wang Q, Chen Q, McKinstry WJ, Ren B Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 69:456, 2013 : PubMed
Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell paramters a = 46.5, b = 62.8, c = 83.8 A, alpha = 70.4, beta = 86.0, gamma = 79.4degre. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60A resolution using synchrotron radiation and a complete data set was collected to 1.65A resolution.
Tannin acylhydrolase (EC 3.1.1.20) referred commonly as tannase catalyzes the hydrolysis of the galloyl ester bond of tannins to release gallic acid. Although the enzyme is useful for various industries, the tertiary structure is not yet determined. In this study, we determined the crystal structure of tannase produced by Lactobacillus plantarum. The tannase structure belongs to a member of alpha/beta-hydrolase superfamily with an additional "lid" domain. A glycerol molecule derived from cryoprotectant solution was accommodated into the tannase active site. The binding manner of glycerol to tannase seems to be similar to that of the galloyl moiety in the substrate. Proteins 2013; 81:2052-2058. (c) 2013 Wiley Periodicals, Inc.
Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an alpha/beta structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme.
        
Title: Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum. Wu M, Peng X, Wen H, Wang Q, Chen Q, McKinstry WJ, Ren B Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 69:456, 2013 : PubMed
Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell paramters a = 46.5, b = 62.8, c = 83.8 A, alpha = 70.4, beta = 86.0, gamma = 79.4degre. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60A resolution using synchrotron radiation and a complete data set was collected to 1.65A resolution.
Lactobacillus plantarum is a highly versatile lactic acid bacterium found in various ecological niches, such as fermented vegetable, meat, and dairy products and the gastrointestinal tract. We sequenced the genome of L. plantarum NC8, a naturally plasmid-free strain, which has been used as a model strain in many laboratories worldwide.
Tannase is an enzyme with important biotechnological applications in the food industry. Previous studies have identified the tannase encoding gene in Lactobacillus plantarum and also have reported the description of the purification of recombinant L. plantarum tannase through a protocol involving several chromatographic steps. Here, we describe the high-yield production of pure recombinant tannase (17 mg/L) by a one-step affinity procedure. The purified recombinant tannase exhibits optimal activity at pH 7 and 40 degrees C. Addition of Ca(2+) to the reaction mixture greatly increased tannase activity. The enzymatic activity of tannase was assayed against 18 simple phenolic acid esters. Only esters derived from gallic acid and protocatechuic acid were hydrolyzed. In addition, tannase activity was also assayed against the tannins tannic acid, gallocatechin gallate, and epigallocatechin gallate. Despite L. plantarum tannase representing a novel family of tannases, which shows no significant similarity to tannases from fungal sources, both families of enzymes shared similar substrate specificity range. The physicochemical characteristics exhibited by L. plantarum recombinant tannase make it an adequate alternative to the currently used fungal tannases.
Lactobacillus plantarum is a lactic acid bacterium (LAB) species commonly used as a probiotic. We have sequenced the genome of Lactobacillus plantarum JDM1, which is a Chinese commercial LAB with several probiotic functions, using a GS 20 system. We recommend that each commercial probiotic strain should undergo complete genome sequencing to ensure safety and stability.
        
Title: Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T) Iwamoto K, Tsuruta H, Nishitaini Y, Osawa R Ref: Syst Appl Microbiol, 31:269, 2008 : PubMed
The gene tanLpl, encoding a novel tannase enzyme (TanLpl), has been cloned from Lactobacillus plantarum ATCC 14917(T). This is the first report of a tannase gene cloned from a bacterial source other than from Staphylococcus lugdunensis, which has been reported elsewhere. The open reading frame of tanLpl, spanning 1410 bp, encoded a 469-amino-acid protein that showed 28.8% identity to the tannase of S. lugdunensis with several commonly conserved sequences. These sequences could not be found in putative tannases reported for other bacteria and fungi. TanLpl was expressed in Escherichia coli DH5alpha from a pGEM-T expression system and purified. SDS-PAGE analysis indicated that purified TanLpl was a monomer polypeptide of approximately 50 kDa in size. Subsequent enzymatic characterization revealed that TanLpl was most active in an alkaline pH range at 40 degrees C, which was quite different from that observed for a fungal tannase of Aspergillus oryzae. In addition, the Michaelis-Menten constant of TanLpl was markedly lower than that of A. oryzae tannase. The evidence suggests that TanLpl should be classified into a novel family of tannases.
The 3,308,274-bp sequence of the chromosome of Lactobacillus plantarum strain WCFS1, a single colony isolate of strain NCIMB8826 that was originally isolated from human saliva, has been determined, and contains 3,052 predicted protein-encoding genes. Putative biological functions could be assigned to 2,120 (70%) of the predicted proteins. Consistent with the classification of L. plantarum as a facultative heterofermentative lactic acid bacterium, the genome encodes all enzymes required for the glycolysis and phosphoketolase pathways, all of which appear to belong to the class of potentially highly expressed genes in this organism, as was evident from the codon-adaptation index of individual genes. Moreover, L. plantarum encodes a large pyruvate-dissipating potential, leading to various end-products of fermentation. L. plantarum is a species that is encountered in many different environmental niches, and this flexible and adaptive behavior is reflected by the relatively large number of regulatory and transport functions, including 25 complete PTS sugar transport systems. Moreover, the chromosome encodes >200 extracellular proteins, many of which are predicted to be bound to the cell envelope. A large proportion of the genes encoding sugar transport and utilization, as well as genes encoding extracellular functions, appear to be clustered in a 600-kb region near the origin of replication. Many of these genes display deviation of nucleotide composition, consistent with a foreign origin. These findings suggest that these genes, which provide an important part of the interaction of L. plantarum with its environment, form a lifestyle adaptation region in the chromosome.