(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Lactobacillales: NE > Lactobacillaceae: NE > Lactobacillus: NE > Lactobacillus acidophilus: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Lactobacillus acidophilus NCFM: N, E.
Lactobacillus acidophilus ATCC 4796: N, E.
Lactobacillus acidophilus CIRM-BIA 442: N, E.
Lactobacillus acidophilus La-14: N, E.
Lactobacillus acidophilus 30SC: N, E.
Lactobacillus acidophilus DSM 20242: N, E.
Lactobacillus acidophilus CIP 76.13: N, E.
Lactobacillus acidophilus CIRM-BIA 445: N, E.
Lactobacillus acidophilus DSM 9126: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSRITIERDGLTLVGDREEPFGEIYDMAILMHGFTANRNTPLLRQIADNL RDENVASVRFDFNGHGESDGAFEDMTVCNEIADAQKILEYVRTDPHVRNI FLVGHSQGGVVASMLAGLYPDIVKKVVLLAPAAQLKDDALNGDTQGATYN PEHIPAAIPFHGKKLGGFYLRTAQVLPIYEIAKHYTNPVSIIVGSNDQVV APKYSKKYDEVYENSELHMVPDADHSFTGQYKDSAVDLTAEFLKPLF
Producing ferulic acid (FA) from the natural substrate with feruloyl esterase is promising in industries, screening and engineering new enzymes with high efficiency to increase the FA yield is of great concern. Here, the feruloyl esterase of Lactobacillus acidophilus (FAELac) was heterologous expressed and the FAELac with different oligomerization states was separated. Interestingly, the activity of dimer was 37-fold higher than high-polymer. To further enhance the efficiency of FAELac, eight mutants were generated based on the simulated structure, of which Q198A, Q134T enhanced the catalytic efficiency by 5.4- and 4.3-fold in comparison with the wild type. Moreover, higher yields of FA (2.21, 6.60, and 1.67 mg/g substrate, respectively) were released by the mutants from de-starched wheat bran, insoluble wheat arabinoxylan, and steam-exploded corn stover. These results indicated that improving the purification process, engineering new FAELac and substrates bias studies hold great potential for increasing FA production yield.
A high variety of plants that are used for food production contain esterified hydroxycinnamic acids. As their free forms display several benefits, like an enhanced absorption in human intestinal tract, anti-oxidative and anti-carcinogenic effects, an improved protein solubility and reduced discoloration, the microbial ability to cleave the ester bond is highly desired. In order to examine potential fermentation strains for this purpose, six different lactic acid bacteria and one bifidobacterial strain were screened for their ability to degrade esterified hydroxycinnamic acids because these strains are commonly used for fermentation of plant-based foods. Moreover, their cinnamoyl esterase activity was examined by molecular biological analyses. The enzymes were heterologously expressed in Escherichia coli, purified and biochemically characterized. The purified esterases with a molecular mass around 27-29 kDa had their optimum predominantly between pH 7 and 8 at 20-30 degreesC. Bifidobacterium animalis subsp. lactis, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus fermentum displayed activities against a broad substrate range (methyl caffeate, methyl trans-p-coumarate, chlorogenic acid as well as partially ethyl ferulate). Concerning substrate affinity, reaction velocity, thermal and pH stability, Lactobacillus gasseri showed the overall best performance. The herein studied lactic acid- and bifidobacteria are promising for the production of fermented plant-based foods with an increased quality and nutritional value.
Lactobacillus acidophilus NCFM is a probiotic bacterium that has been produced commercially since 1972. The complete genome is 1,993,564 nt and devoid of plasmids. The average GC content is 34.71% with 1,864 predicted ORFs, of which 72.5% were functionally classified. Nine phage-related integrases were predicted, but no complete prophages were found. However, three unique regions designated as potential autonomous units (PAUs) were identified. These units resemble a unique structure and bear characteristics of both plasmids and phages. Analysis of the three PAUs revealed the presence of two R/M systems and a prophage maintenance system killer protein. A spacers interspersed direct repeat locus containing 32 nearly perfect 29-bp repeats was discovered and may provide a unique molecular signature for this organism. In silico analyses predicted 17 transposase genes and a chromosomal locus for lactacin B, a class II bacteriocin. Several mucus- and fibronectin-binding proteins, implicated in adhesion to human intestinal cells, were also identified. Gene clusters for transport of a diverse group of carbohydrates, including fructooligosaccharides and raffinose, were present and often accompanied by transcriptional regulators of the lacI family. For protein degradation and peptide utilization, the organism encoded 20 putative peptidases, homologs for PrtP and PrtM, and two complete oligopeptide transport systems. Nine two-component regulatory systems were predicted, some associated with determinants implicated in bacteriocin production and acid tolerance. Collectively, these features within the genome sequence of L. acidophilus are likely to contribute to the organisms' gastric survival and promote interactions with the intestinal mucosa and microbiota.