Novozym 51032 Hydrolysis of triglycerides and a variety of molecules containing ester linkages. Specific hydrolytic activity on polyvinyl acetate .Catalyzed Polyester-Polyurethane degradation
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > sordariomyceta: NE > Sordariomycetes: NE > Sordariomycetidae: NE > Sordariales: NE > Chaetomiaceae: NE > Humicola: NE > Humicola insolens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA QLGAIENGLESGSANACPDAILIFARGSTEPGNMGITVGPALANGLESHI RNIWIQGVGGPYDAALATNFLPRGTSQANIDEGKRLFALANQKCPNTPVV AGGYSQGAALIAAAVSELSGAVKEQVKGVALFGYTQNLQNRGGIPNYPRE RTKVFCNVGDAVCTGTLIITPAHLSYTIEARGEAARFLRDRIRA
References
18 moreTitle: Enhanced activity towards polyacrylates and poly(vinyl acetate) by site-directed mutagenesis of Humicola insolens cutinase Su L, Hong R, Kong D, Wu J Ref: Int J Biol Macromol, 162:1752, 2020 : PubMed
Previous studies on the hydrolysis of polyacrylates by cutinase have found that cutinase from Humicola insolens can fulfill the requirement for a thermostable cutinase in the treatment of stickies from papermaking, but it has poor hydrolysis ability. To further improve its ability to hydrolyze the polymers in papermaking, we analyzed the structure of cutinase from H. insolens, and constructed three mutants L66A, I169A, and L66A/I169A to reduce the steric hindrance of the substrate binding region. The hydrolysis results for poly(methyl acrylate), poly(ethyl acrylate), and poly(vinyl acetate) showed the catalytic ability of the mutant L66A/I169A most significantly improved. Using polymer macroporous resin composites as substrate, the released products of L66A/I169A were 1.3-4.4 times higher than that of the wild-type enzyme. When polymer suspensions were no longer being deposited, that is, when the turbidity decrease was less than 1%, the amount of L66A/I169A added was reduced by 19%-51% compared with that of the wild-type enzyme. These results indicated that the removal of the gatekeeper structure above the substrate binding region of H. insolens cutinase enhances its ability to hydrolyze polymers, and provided a basis for the application of cutinase in the practical treatment of stickies.
The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.
The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka approximately 105 M-1 ). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but, unexpectedly, esterification of the active site serine is accompanied by the ethylation of the active site histidine which flips out from its usual position in the triad.
Polyurethanes (PU) are one of the most-used classes of synthetic polymers in Europe, having a considerable impact on the plastic waste management in the European Union. Therefore, they represent a major challenge for the recycling industry, which requires environmentally friendly strategies to be able to re-utilize their monomers without applying hazardous and polluting substances in the process. In this work, enzymatic hydrolysis of a polyurethane-polyester (PU-PE) copolymer using Humicola insolens cutinase (HiC) has been investigated in order to achieve decomposition at milder conditions and avoiding harsh chemicals. PU-PE films have been incubated with the enzyme at 50 C for 168 h, and hydrolysis has been followed throughout the incubation. HiC effectively hydrolysed the polymer, reducing the number average molecular weight (Mn) and the weight average molecular weight (Mw) by 84% and 42%, respectively, as shown by gel permeation chromatography (GPC), while scanning electron microscopy showed cracks at the surface of the PU-PE films as a result of enzymatic surface erosion. Furthermore, Fourier Transform Infrared (FTIR) analysis showed a reduction in the peaks at 1725 cm-1, 1164 cm-1 and 1139 cm-1, indicating that the enzyme preferentially hydrolysed ester bonds, as also supported by the nuclear magnetic resonance spectroscopy (NMR) results. Liquid chromatography time-of-flight/mass spectrometry (LC-MS-Tof) analysis revealed the presence in the incubation supernatant of all of the monomeric constituents of the polymer, thus suggesting that the enzyme was able to hydrolyse both the ester and the urethane bonds of the polymer.
Bioprocessing of polyester waste has emerged as a promising tool in the quest for a cyclic plastic economy. One key step is the enzymatic breakdown of the polymer, and this entails a complicated pathway with substrates, intermediates, and products of variable size and solubility. We have elucidated this pathway for poly(ethylene terephthalate) (PET) and four enzymes. Specifically, we combined different kinetic measurements and a novel stochastic model and found that the ability to hydrolyze internal bonds in the polymer (endo-lytic activity) was a key parameter for overall enzyme performance. Endo-lytic activity promoted the release of soluble PET fragments with two or three aromatic rings, which, in turn, were broken down with remarkable efficiency (k(cat) /K(M) values of about 10(5) M(-1) s(-1) ) in the aqueous bulk. This meant that approximatly 70 % of the final, monoaromatic products were formed via soluble di- or tri-aromatic intermediates.
Poly(ethylene terephthalate) (PET) is one of the main synthetic plastics produced worldwide. The extensive use of this polymer causes several problems due to its low degradability. In this scenario, biocatalysts dawn as an alternative to enhance PET recycling. The enzymatic hydrolysis of PET results in a mixture of terephthalic acid (TPA), ethylene glycol (EG), mono-(2-hydroxyethyl) terephthalate (MHET) and bis-(2-hydroxyethyl) terephthalate (BHET) as main products. This work developed a new methodology to quantify the hydrolytic activity of biocatalysts, using BHET as a model substrate. The protocol can be used in screening enzymes for PET depolymerization reactions, amongst other applications. The very good fitting (R(2)=0.993) between experimental data and the mathematical model confirmed the feasibility of the Michaelis-Menten equation to analyze the effect of BHET concentration (8 to 200mmolL(-1)) on initial hydrolysis rate catalyzed by Humicola insolens cutinase (HiC). In addition to evaluating the effects of enzyme and substrate concentration on the enzymatic hydrolysis of BHET, a novel and straightforward method for MHET synthesis was developed using an enzyme load of 0.025 g(protein) g(BHET)(-1) and BHET concentration of 60mmolL(-1) at 40(o)C. MHET was synthesized with high selectivity (97%) and yield (82%). The synthesized MHET properties were studied using differential scanning calorimetry (DSC), thermogravimetry (TGA), and proton nuclear magnetic resonance ((1)H NMR), observing the high purity of the final product (86.7%). As MHET is not available commercially, this synthesis using substrate and enzyme from open suppliers adds new perspectives to monitoring PET hydrolysis reactions.
        
Title: Adsorption of enzymes with hydrolytic activity on polyethylene terephthalate Badino SF, Baath JA, Borch K, Jensen K, Westh P Ref: Enzyme Microb Technol, 152:109937, 2021 : PubMed
Polyethylene terephthalate (PET) degrading enzymes have recently obtained an increasing interest as a means to decompose plastic waste. Here, we have studied the binding of three PET hydrolases on a suspended PET powder under conditions of both enzyme- and substrate excess. A Langmuir isotherm described the binding process reasonably and revealed a prominent affinity for the PET substrate, with dissociation constants consistently below 150 nM. The saturated substrate coverage approximately corresponded to a monolayer on the PET surface for all three enzymes. No distinct contributions from specific ligand binding in the active site could be identified, which points towards adsorption predominantly driven by non-specific interactions in contrast to enzymes naturally evolved for the breakdown of insoluble polymers. However, we observed a correlation between the progression of enzymatic hydrolysis and increased binding capacity, probably due to surface modifications of the PET polymer over time. Our results provide functional insight, suggesting that rational design should target the specific ligand interaction in the active site rather than the already high, general adsorption capacity of these enzymes.
Less than 9% of the plastic produced is recycled after use, contributing to the global plastic pollution problem. While polyethylene terephthalate (PET) is one of the most common plastics, its thermomechanical recycling generates a material of lesser quality. Enzymes are highly selective, renewable catalysts active at mild temperatures; however, they lack activity toward the more crystalline forms of PET commonly found in consumer plastics, requiring the energy-expensive melt-amorphization step of PET before enzymatic depolymerization. We report here that, when used in moist-solid reaction mixtures instead of the typical dilute aqueous solutions or slurries, the cutinase from Humicola insolens can directly depolymerize amorphous and crystalline regions of PET equally, without any pretreatment, with a 13-fold higher space-time yield and a 15-fold higher enzyme efficiency than reported in prior studies with high-crystallinity material. Further, this process shows a 26-fold selectivity for terephthalic acid over other hydrolysis products.
        
Title: Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET Magalhaes RP, Cunha JM, Sousa SF Ref: Int J Mol Sci, 22:11257, 2021 : PubMed
Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.
The environmental impact arising from poly(ethylene terephthalate) (PET) waste is notable worldwide. Enzymatic PET hydrolysis can provide chemicals that serve as intermediates for value-added product synthesis and savings in the resources. In the present work, some reaction parameters were evaluated on the hydrolysis of post-consumer PET (PC-PET) using a cutinase from Humicola insolens (HiC). The increase in PC-PET specific area leads to an 8.5-fold increase of the initial enzymatic hydrolysis rate (from 0.2 to 1.7mmolL(-1) h(-1)), showing that this parameter plays a crucial role in PET hydrolysis reaction. The effect of HiC concentration was investigated, and the enzymatic PC-PET hydrolysis kinetic parameters were estimated based on three different mathematical models describing heterogeneous biocatalysis. The model that best fits the experimental data (R(2) = 0.981) indicated 1.68 mg(protein) mL(-1) as a maximum value of the enzyme concentration to optimize the reaction rate. The HiC thermal stability was evaluated, considering that it is a key parameter for its efficient use in PET degradation. The enzyme half-life was shown to be 110h at 70(o)C and pH 7.0, which outperforms most of the known enzymes displaying PET hydrolysis activity. The results evidence that HiC is a very promising biocatalyst for efficient PET depolymerization.
        
Title: Enhanced activity towards polyacrylates and poly(vinyl acetate) by site-directed mutagenesis of Humicola insolens cutinase Su L, Hong R, Kong D, Wu J Ref: Int J Biol Macromol, 162:1752, 2020 : PubMed
Previous studies on the hydrolysis of polyacrylates by cutinase have found that cutinase from Humicola insolens can fulfill the requirement for a thermostable cutinase in the treatment of stickies from papermaking, but it has poor hydrolysis ability. To further improve its ability to hydrolyze the polymers in papermaking, we analyzed the structure of cutinase from H. insolens, and constructed three mutants L66A, I169A, and L66A/I169A to reduce the steric hindrance of the substrate binding region. The hydrolysis results for poly(methyl acrylate), poly(ethyl acrylate), and poly(vinyl acetate) showed the catalytic ability of the mutant L66A/I169A most significantly improved. Using polymer macroporous resin composites as substrate, the released products of L66A/I169A were 1.3-4.4 times higher than that of the wild-type enzyme. When polymer suspensions were no longer being deposited, that is, when the turbidity decrease was less than 1%, the amount of L66A/I169A added was reduced by 19%-51% compared with that of the wild-type enzyme. These results indicated that the removal of the gatekeeper structure above the substrate binding region of H. insolens cutinase enhances its ability to hydrolyze polymers, and provided a basis for the application of cutinase in the practical treatment of stickies.
One of the largest commercial applications of enzymes and surfactants is as main components in modern detergents. The high concentration of surfactant compounds usually present in detergents can, however, negatively affect the enzymatic activity. To remedy this drawback, it is of great importance to characterize the interaction between the enzyme and the surfactant molecules at an atomistic resolution. The protein enzyme cutinase from the thermophilic and saprophytic fungus called Humicola insolens (HiC) is a promising candidate for use in detergents thanks to its hydrolase activity targeting mostly biopolyesters (e.g., cutin). HiC is, however, inhibited by low concentrations of sodium dodecyl sulfate (SDS), an ubiquitous surfactant. In this work, we investigate the interaction between HiC and SDS using molecular dynamics simulations. Simulations of HiC dissolved in different aqueous concentrations of SDS show the interaction between HiC and SDS monomers, as well as the formation and dynamics of SDS micelles on the surface of the enzyme. These results suggest a mechanism of cutinase inhibition by SDS, which involves the nucleation of aggregates of SDS molecules on hydrophobic patches on the cutinase surface. Notably, a primary binding site for monomeric SDS is identified near the active site of HiC constituting a possible nucleation point for micelles and leading to the blockage of the entrance to the enzymatic site. Detailed analysis of the simulations allow us to suggest a set of residues from the SDS binding site on HiC to probe as engineered mutations aimed at reducing SDS binding to HiC, thereby decreasing SDS inhibition of HiC.
The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.
The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka approximately 105 M-1 ). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but, unexpectedly, esterification of the active site serine is accompanied by the ethylation of the active site histidine which flips out from its usual position in the triad.
Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET.
        
Title: Identification and comparison of cutinases for synthetic polyester degradation Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK Ref: Applied Microbiology & Biotechnology, 93:229, 2012 : PubMed
Cutinases have been exploited for a broad range of reactions, from hydrolysis of soluble and insoluble esters to polymer synthesis. To further expand the biotechnological applications of cutinases for synthetic polyester degradation, we perform a comparative activity and stability analysis of five cutinases from Alternaria brassicicola (AbC), Aspergillus fumigatus (AfC), Aspergillus oryzae (AoC), Humicola insolens (HiC), and the well-characterized Fusarium solani (FsC). Of the cutinases, HiC demonstrated enhanced poly(epsilon-caprolactone) hydrolysis at high temperatures and under all pH values, followed by AoC and AfC. Both AbC and FsC are least stable and function poorly at high temperatures as well as at acidic pH conditions. Surface charge calculations and phylogenetic analysis reveal two important modes of cutinase stabilization: (1) an overall neutral surface charge within the "crowning area" by the active site and (2) additional disulfide bond formation. These studies provide insights useful for reengineering such enzymes with improved function and stability for a wide range of biotransformations.
Immobilized cutinase HiC from the ascomycete Humicola insolens was applied as a novel biocatalyst for the synthesis of functionalized acryclic esters by transesterification. As a model reaction, transesterification of methyl acrylate with 6-mercapto-1-hexanol at a high molar ratio in a solvent free system was chosen. Besides two minor Michael-addition by-products, 6-mercaptohexyl acrylic ester was identified as the main product with the thiol as the functional end group. Reaction conditions were optimized regarding the influence of water (0-1.72 M), temperature (22-50 degrees C), product inhibition and addition of the radical inhibitor butylated hydroxytoluol (BHT; 0.14-0.71 M) on conversion and by-product formation. Highest conversion of 6-mercapto-1-hexanol to 6-mercaptohexyl acrylic ester (95.4 +/- 0.3%) was achieved after 6h at 40 degrees C in the presence of 0.025% (w/w) water without formation of by-products in a solvent free system. Applying methyl methacrylate, transesterification with 6-mercapto-1-hexanol was significantly lower (43.6 +/- 0.1%) compared to transesterification of methyl acrylate with 6-mercapto-1-hexanol.
        
Title: Substrate conformations set the rate of enzymatic acrylation by lipases Syren PO, Hult K Ref: Chembiochem, 11:802, 2010 : PubMed
Acrylates represent a class of alpha,beta-unsaturated compounds of high industrial importance. We investigated the influence of substrate conformations on the experimentally determined reaction rates of the enzyme-catalysed transacylation of methyl acrylate and derivatives by ab initio DFT B3LYP calculations and molecular dynamics simulations. The results supported a least-motion mechanism upon the sp(2) to sp(3) substrate transition to reach the transition state in the enzyme active site. This was in accordance with our hypothesis that acrylates form productive transition states from their low-energy s-sis/s-trans conformations. Apparent k(cat) values were measured for Candida antarctica lipase B (CALB), Humicola insolens cutinase and Rhizomucor miehei lipase and were compared to results from computer simulations. More potent enzymes for acryltransfer, such as the CALB mutant V190A and acrylates with higher turnover numbers, showed elevated populations of productive transition states.
        
Title: Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate) Ronkvist AM, Xie W, Lu W, Gross RA Ref: Macromolecules, 42:5128 , 2009 : PubMed
A detailed study and comparison was made on the catalytic activities of cutinases from Humilica insolens (HiC), Pseudomonas mendocina (PmC), and Fusarium solani (FsC) using low-crystallinity (lc) and biaxially oriented (bo) poly(ethylene terephthalate) (PET) films as model substrates. Cutinase activity for PET hydrolysis was assayed using a pH-stat to measure NaOH consumption versus time, where initial activity was expressed as units of micromoles of NaOH added per hour and per milliliter of reaction volume. HiC was found to have good thermostability with maximum initial activity from 70 to 80 degC, whereas PmC and FsC performed best at 50 degC. Assays by pH-stat showed that the cutinases had about 10-fold higher activity for the lcPET (7% crystallinity) than for the boPET (35% crystallinity). Under optimal reaction conditions, initial activities of cutinases were successfully fit by a heterogeneous kinetic model. The hydrolysis rate constant k2 was 7-fold higher for HiC at 70 degC (0.62 mol/cm2/h) relative to PmC and FsC at 50 and 40 degC, respectively. With respect to PET affinity, PmC had the highest affinity, while FsC had the lowest value. In a 96 h degradation study using lcPET films, incubation with PmC and FsC both resulted in a 5% film weight loss at 50 and 40 degC, respectively. In contrast, HiC-catalyzed lcPET film hydrolysis at 70 degC resulted in a 97 3% weight loss in 96 h, corresponding to a loss in film thickness of 30 m per day. As degradation of lcPET progressed, crystallinity of the remaining film increased to 27% due to preferential degradation of amorphous regions. Furthermore, for all three cutinases, analysis of aqueous soluble degradation products showed that they consist exclusively of terephthalic acid and ethylene glycol.
        
Title: Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: kinetic and mechanistic studies Hunsen M, Abul A, Xie W, Gross R Ref: Biomacromolecules, 9:518, 2008 : PubMed
This paper explores reaction kinetics and mechanism for immobilized Humicola insolenscutinase (HIC), an important new biocatalyst that efficiently catalyzes non-natural polyester synthetic reactions. HIC, immobilized on Lewatit, was used as catalyst for epsilon-caprolactone (CL) and omega-pentadecalactone (PDL) ring-opening polymerizations (ROPs). Plots of percent CL conversion vs time were obtained in the temperature range from 50 to 90 degrees C. The kinetic plot of ln([M]0/[M]t) vs time (r2 = 0.99) for HIC-catalyzed bulk ROP of CL was linear, indicating that chain termination did not occur and the propagation rate is first order with respect to monomer concentration. Furthermore, linearity to 90% conversion for M(n) vs fractional CL conversion is consistent with a chain-end propagation mechanism. Deviation from linearity above 90% conversion indicates that a competition between ring-opening chain-end propagation and chain growth by steplike polycondensations takes place at high monomer conversion. HIC was inactive for catalysis of L-lactide and (R,S)-beta-butyrolactone ROP. HIC-catalyzed ROP of epsilon-CL and PDL in toluene were successfully performed, giving high molecular weight poly(epsilon-caprolactone) and omega-poly(pentadecalactone). In addition, the relative activities of immobilized Candida antarctica lipase B (CALB) and HIC for epsilon-CL and PDL polymerizations are reported herein.
        
Title: Thermal stability of Humicola insolens cutinase in aqueous SDS Nielsen AD, Borch K, Westh P Ref: J Phys Chem B, 111:2941, 2007 : PubMed
Cutinase from Humicola insolens (HiC) has previously been shown to bind anomalously low amounts of the anionic surfactant sodium dodecylsulfate (SDS). In the current work, we have applied scanning and titration calorimetry to investigate possible relationships between this weak interaction and the effect of SDS on the equilibrium and kinetic stability of HiC. The results are presented in a "state-diagram," which specifies the stable form of the protein as a function of temperature and SDS concentration. In comparison with other proteins, the equilibrium stability HiC is strongly decreased by SDS. For low SDS concentrations (SDS:HiC molar ratio, MR < 8) this trait is also found for the kinetically controlled thermal aggregation of the protein. At higher MR, however, SDS stabilizes noticeably against irreversible aggregation. We suggest that this relies on electrostatic repulsion of the increasingly negatively charged HiC-SDS complexes. The combined interpretation of calorimetric and binding data allowed the calculation of the changes in enthalpy and heat capacity for the association of HiC and SDS near the saturation point. The latter function was about -410 J mol(-1) K(-1) or similar to the heat capacity change for micelle formation (-470 J mol(-1) K(-1)). This suggests that SDS is hydrated to a similar extent in the micellar and protein associated forms. The results are discussed in terms of the Wyman theory for linked equilibria. Quantitative analysis along these lines suggests that the reversible thermal unfolding of the protein couples to the binding of 2-3 additional SDS molecules. This corresponds to a 15-20% increase in the binding number. Wyman theory also rationalizes relationships between low affinity and high susceptibility observed in this study.
        
Title: Analysis of protein-surfactant interactions--a titration calorimetric and fluorescence spectroscopic investigation of interactions between Humicola insolens cutinase and an anionic surfactant Nielsen AD, Arleth L, Westh P Ref: Biochimica & Biophysica Acta, 1752:124, 2005 : PubMed
We have studied interactions of cutinase (HiC) from Humicula insolens and sodium dodecyl sulphate (SDS) by parallel calorimetric and fluorescence investigations of systems in which the concentration of both components was changed systematically. Results from the two methods exhibit a number of synchronous characteristics, when plotted against the total SDS concentration, [SDS]tot. The molecular origin of several of these anomalies was assigned, and five intervals of [SDS]tot in which different modes of interactions dominated were identified. Going from low to high [SDS]tot, these modes were: binding of (a few) SDS to native HiC, formation of oligomeric protein aggregates, denaturation of HiC and adsorption of SDS on denatured protein. For [SDS]tot>3-6 mM (depending on the protein concentration), the adsorption saturated, and no further protein-detergent interaction could be detected. Two particularly conspicuous anomalies in the calorimetric data were ascribed to respectively denaturation and saturation. It was found that [SDS]tot at these points depended linearly on the (total) protein concentration, [HiC]. We suggest that this reflects the balance between bound and free SDS [SDS]tot=[SDS]aq+[HiC] Nb where [SDS]aq and Nb are, respectively, the aqueous ("free") concentration of SDS and the average number of SDS bound per protein. Interpretation of the results along these lines showed that at 22 degrees C and pH 7.0, HiC denatures with approximately 14 bound surfactant molecules at [SDS]aq=1.0 mM. Saturation is characterized by Nb approximately 39 and [SDS]aq=2.2 mM. The latter value is equal to CMC in the (protein free) buffer. These results are discussed with respect to the SDS-binding capacity of HiC and the origin and location of the saturation point.
        
Title: Interactions of Humicola insolens cutinase with an anionic surfactant studied by small-angle neutron scattering and isothermal titration calorimetry Nielsen AD, Arleth L, Westh P Ref: Langmuir, 21:4299, 2005 : PubMed
The interaction of cutinase from Humicula insolens (HiC) and sodium dodecyl sulfate (SDS) has been investigated by small-angle neutron scattering (SANS) and isothermal titration calorimetry (ITC). The concerted interpretation of structural and thermodynamic information for identical systems proved valuable in attempts to elucidate the complex modes of protein-detergent interaction. Particularly so at the experimental temperature 22 degrees C, where the formation of SDS micelles is athermal (deltaH = 0), and the effects of protein-detergent interactions stand out clearly in the thermograms. It was found that the effect of SDS on cutinase depended strongly on the sample composition. Thus, addition of SDS corresponding to a molar ratio, n(s) = n(SDS)/n(HiC) of about 10, was associated with the formation of HiC/SDS aggregates, which include more than one protein molecule. The SANS results suggested that on the average such adducts contained two HiC, and the ITC traces showed that they form and break down slowly. At slightly higher SDS concentrations (n(s) = 10-25) these "dimers" dissociated, and the protein denatured. The denaturation showed the characteristic positive enthalpy change, but the SDS denatured state of HiC was unusually compact with a radius of gyration close to that of the native conformation. Further titration with SDS was associated with exothermic binding to the denatured protein until the saturation point at about n(s) = 90. At this point, the free monomer concentration was 2.2 mM and the binding number was approximately 40 SDS/HiC. Interestingly, this degree of SDS binding (approximately 0.5 g of SDS/g of HiC) is less than half the amount bound to typical water-soluble proteins.
        
Title: Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride Ternstrom T, Svendsen A, Akke M, Adlercreutz P Ref: Biochimica & Biophysica Acta, 1748:74, 2005 : PubMed
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.