Homo sapiens (Human) Maspardin spg21 acid cluster protein 33 ACP33 sbm-019 (gl010)flj24010 Maspardin
Comment
Maspardin-ACP33-SPG21 is mutated in Mast syndrome (Cross and McKusick 1967, Simpson et al 2003); In an Ohio Amish isolate, Cross and McKusick (1967) found 20 cases of a recessively inherited form of presenile dementia, which they termed Mast syndrome: Onset in the late teens or twenties and slow progression, an autosomal recessive, complicated form of hereditary spastic paraplegia with dementia. A 1-bp insertion (601insA) in the ACP33 gene, causing a frameshift and premature termination of the protein was found (Simpson et al 2003). Ishiura et al. (2014) reported 2 Japanese brothers with autosomal recessive SPG21. The patients had onset of gait disturbances in their fifties and sixties, much later than that reported by Cross and McKusick (1967) The mutation was A108P substitution. ACP33 binds the intracellular domain of CD4. Mutation S109A abolishes the interraction. S109 is in similar position as active site serine of a/b hydrolase (Zeitlmann 2001). Maspardin interacts with the aldehyde dehydrogenase ALDH16A1 (Hanna 2009)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
A108P_human-SPG21 : Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses DelEx3Ex7_human-SPG21 : Identification of a large homozygous SPG21 deletion in a Chinese patient with Mast syndrome F40EfsX27_human-SPG21 : Exome sequencing reveals a novel homozygous mutation in ACP33 gene in the first Italian family with SPG21 I163X_human-SPG21 : Mast Syndrome Outside the Amish Community: SPG21 in Europe R40X_human-SPG21 : Mast Syndrome Outside the Amish Community: SPG21 in Europe T201NfsX11 : Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia V52fs_human-SPG21 : Mast Syndrome Outside the Amish Community: SPG21 in Europe
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MGEIKVSPDYNWFRGTVPLKKIIVDDDDSKIWSLYDAGPRSIRCPLIFLP PVSGTADVFFRQILALTGWGYRVIALQYPVYWDHLEFCDGFRKLLDHLQL DKVHLFGASLGGFLAQKFAEYTHKSPRVHSLILCNSFSDTSIFNQTWTAN SFWLMPAFMLKKIVLGNFSSGPVDPMMADAIDFMVDRLESLGQSELASRL TLNCQNSYVEPHKIRDIPVTIMDVFDQSALSTEAKEEMYKLYPNARRAHL KTGGNFPYLCRSAEVNLYVQIHLLQFHGTKYAAIDPSMVSAEELEVQKGS LGISQEEQ
Mast syndrome (SPG21) is a childhood-onset, autosomal recessive, complicated form of hereditary spastic paraplegia (HSP) characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product maspardin underlies this disorder, likely leading to loss of protein function. In this study, we generated SPG21-/- knockout mice by homologous recombination as a possible animal model for SPG21. Though SPG21-/- mice appeared normal at birth, within several months they developed gradually progressive hind limb dysfunction. Cerebral cortical neurons cultured from SPG21-/- mice exhibited significantly more axonal branching than neurons from wild-type animals, while comprehensive neuropathological analysis of SPG21-/- mice did not reveal definitive abnormalities. Since alterations in axon branching have been seen in neurons derived from animal models of other forms of HSP as well as motor neuron diseases, this may represent a common cellular pathogenic theme.
Mast syndrome is an autosomal recessive, complicated form of hereditary spastic paraplegia with dementia that is present at high frequency among the Old Order Amish. Subtle childhood abnormalities may be present, but the main features develop in early adulthood. The disease is slowly progressive, and cerebellar and extrapyramidal signs are also found in patients with advanced disease. Patients have a thin corpus callosum and white-matter abnormalities, as seen on magnetic resonance imaging. Using an extensive Amish pedigree, we have mapped the Mast syndrome locus (SPG21) to a small interval of chromosome 15q22.31 that encompasses just three genes. Sequence analysis of the three transcripts revealed that all 14 affected cases were homozygous for a single base-pair insertion (601insA) in the acid-cluster protein of 33 kDa (ACP33) gene. This frameshift results in the premature termination (fs201-212X213) of the encoded product, which is designated "maspardin" (Mast syndrome, spastic paraplegia, autosomal recessive with dementia), and has been shown elsewhere to localize to intracellular endosomal/trans-Golgi transportation vesicles and may function in protein transport and sorting.
CD4 recruitment to T cell receptor (TCR)-peptide-major histocompatibility class II complexes is required for stabilization of low affinity antigen recognition by T lymphocytes. The cytoplasmic portion of CD4 is thought to amplify TCR-initiated signal transduction via its association with the protein tyrosine kinase p56(lck). Here we describe a novel functional determinant in the cytosolic tail of CD4 that inhibits TCR-induced T cell activation. Deletion of two conserved hydrophobic amino acids from the CD4 carboxyl terminus resulted in a pronounced enhancement of CD4-mediated T cell costimulation. This effect was observed in the presence or absence of p56(lck), implying involvement of alternative cytosolic ligands of CD4. A two-hybrid screen with the intracellular portion of CD4 identified a previously unknown 33-kDa protein, ACP33 (acidic cluster protein 33), as a novel intracellular binding partner of CD4. Since interaction with ACP33 is abolished by deletion of the hydrophobic CD4 C-terminal amino acids mediating repression of T cell activation, we propose that ACP33 modulates the stimulatory activity of CD4. Furthermore, we demonstrate that interaction with CD4 is mediated by the noncatalytic alpha/beta hydrolase fold domain of ACP33. This suggests a previously unrecognized function for alpha/beta hydrolase fold domains as a peptide binding module mediating protein-protein interactions.
Background: Mast syndrome is a rare disorder belonging to the group of hereditary spastic paraplegias (HSPs). It is caused by bi-allelic mutations in the ACP33 gene, and is originally described in Old Order Amish. Outside this population, only one Japanese and one Italian family have been reported. Herein, we describe five subjects from the first three SPG21 families of German and Austrian descent.
Methods: Five subjects with complicated HSP were referred to our centers. The workup consisted of neurological examination, neurophysiological and neuropsychological assessments, MRI, and genetic testing.
Results: Onset varied from child- to adulthood. All patients exhibited predominant spastic para- or tetraparesis with positive pyramidal signs, pronounced cognitive impairment, ataxia, and extrapyramidal signs. Neurophysiological workup showed abnormal motor and sensory evoked potentials in all the patients. Sensorimotor axonal neuropathy was present in one patient. Imaging exhibited thin corpus callosum and global brain atrophy. Genetic testing revealed one heterozygous compound and two homozygous mutations in the ACP33 gene.
Conclusion: Herein, we report the first three Austrian and two German patients with SPG21, presenting a detailed description of their clinical phenotype and disease course. Our report adds to the knowledge of this extremely rare disorder, and highlights that SPG21 must also be considered in the differential diagnosis of complicated HSP outside the Amish community.
        
Title: Identification of a large homozygous SPG21 deletion in a Chinese patient with Mast syndrome Xue YY, Huang XR, Dong HL, Wu ZY, Li HF Ref: CNS Neurosci Ther, :, 2021 : PubMed
A 37-year old man presented a slight delay in early developmental milestones, cognitive decline, difficulty walking, cerebellar signs and extrapyramidal signs. Brain magnetic resonance imaging (MRI) showed a thin corpus callosum, cerebral atrophy, non-specific white-matter hyperintensity, and cerebellar atrophy. The genetic test revealed a putative homozygous deletion in SPG21 from exon 3 through exon 7, which was further validated by long-range primer-walking PCR. This is the first report of Chinese patient with Mast syndrome carrying a large homozygous SPG21 deletion.
Hereditary spastic paraplegia (HSP) is one of the most genetically heterogeneous neurodegenerative disorders characterized by progressive spasticity and pyramidal weakness of lower limbs. Because >30 causative genes have been identified, screening of multiple genes is required for establishing molecular diagnosis of individual patients with HSP. To elucidate molecular epidemiology of HSP in the Japanese population, we have conducted mutational analyses of 16 causative genes of HSP (L1CAM, PLP1, ATL1, SPAST, CYP7B1, NIPA1, SPG7, KIAA0196, KIF5A, HSPD1, BSCL2, SPG11, SPG20, SPG21, REEP1 and ZFYVE27) using resequencing microarrays, array-based comparative genomic hybridization and Sanger sequencing. The mutational analysis of 129 Japanese patients revealed 49 mutations in 46 patients, 32 of which were novel. Molecular diagnosis was accomplished for 67.3% (33/49) of autosomal dominant HSP patients. Even among sporadic HSP patients, mutations were identified in 11.1% (7/63) of them. The present study elucidated the molecular epidemiology of HSP in the Japanese population and further broadened the mutational and clinical spectra of HSP.
Hereditary spastic paraplegia (SPG) is a clinically and genetically heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive spasticity and weakness of the lower-limbs (pure SPG) and, majoritorian, additional more extensive neurological or non-neurological manifestations (complex or complicated SPG). Pure SPG is characterised by progressive spasticity and weakness of the lower-limbs, and occasionally sensory disturbances or bladder dysfunction. Complex SPGs additionally include cognitive impairment, dementia, epilepsy, extrapyramidal disturbances, cerebellar involvement, retinopathy, optic atrophy, deafness, polyneuropathy, or skin lesions in the absence of coexisting disorders. Nineteen SPGs follow an autosomal-dominant (AD-SPG), 27 an autosomal-recessive (AR-SPG), 5 X-linked (XL-SPG), and one a maternal trait of inheritance. SPGs are due to mutations in genes encoding for proteins involved in the maintenance of corticospinal tract neurons. Among the AD-SPGs, 40-45% of patients carry mutations in the SPAST-gene (SPG4) and 10% in the ATL1-gene (SPG3), while the other 9 genes are more rarely involved (NIPA1 (SPG6), KIAA0196 (SPG8), KIF5A (SPG10), RNT2 (SPG12), SPGD1 (SPG13), BSCL2 (SPG17), REEP1 (SPG31), ZFYVE27 (SPG33, debated), and SLC33A1 (SPG42, debated)). Among the AR-SPGs, ~20% of the patients carry mutations in the KIAA1840 (SPG11) gene whereas the 15 other genes are rarely mutated and account for SPGs in single families yet (CYP7B1 (SPG5), SPG7 (SPG7), ZFYVE26 (SPG15), ERLIN2 (SPG18), SPG20 (SPG20), ACP33 (SPG21), KIF1A (SPG30), FA2H (SPG35), NTE (SPG39), GJA12/GJC2 (SPG44), KIAA0415 (SPG48) and 4 genes encoding for the AP4-complex (SPG47)). Among the XL-SPGs, 3 causative genes have been identified (L1CAM (SPG1), PLP1 (SPG2), and SLC16A2 (SPG22)). The diagnosis of SPGs is based on clinical, instrumental and genetic investigations. Treatment is exclusively symptomatic.
        
Title: [Study of the effect and mechanism of spastic paraplegia 21 protein on the replication of hepatitis B virus] Gao GS, Weng PJ, Li RY, Ding SX Ref: Zhonghua Gan Zang Bing Za Zhi, 19:747, 2011 : PubMed
OBJECTIVE: To study the effect of human spastic paraplegia 21 protein (SPG21) on the replication of hepatitis B virus(HBV) and its regulatory mechanism. METHODS: HBV infectious clone pHBV1.3 and its promoter pHBV-Luc were transfected respectively into HepG2 cells with SPG21 of different concentrations, HBsAg and HBeAg in the supernatants were measured by enzyme linked immunosorbent assay (ELISA), expression of HBV core mRNA and protein were detected by RT-PCR and western blot, covalently closed circular DNA(ccc DNA) levels were measured by real-time PCR, and HBV promoter activity was measured by luminometer fluorescence detector. RESULTS: Expression of HBsAg, HBeAg, HBV core protein and cccDNA were upregulated by SPG21 as well as HBV promoter activity in a dose-dependent approach. The activity of HBV promoter increased to 1.63, 3.09 and 4.66 times in HepG2 cells treated with 50mug/ml, 100mug/ml and 200mug/ml SPG21 respectively during 48 hour-treated ( P less than 0.05), as compared to the control group. CONCLUSIONS: SPG21 can enhance the replication of HBV in HepG2 cells.
Mast syndrome (SPG21) is a childhood-onset, autosomal recessive, complicated form of hereditary spastic paraplegia (HSP) characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product maspardin underlies this disorder, likely leading to loss of protein function. In this study, we generated SPG21-/- knockout mice by homologous recombination as a possible animal model for SPG21. Though SPG21-/- mice appeared normal at birth, within several months they developed gradually progressive hind limb dysfunction. Cerebral cortical neurons cultured from SPG21-/- mice exhibited significantly more axonal branching than neurons from wild-type animals, while comprehensive neuropathological analysis of SPG21-/- mice did not reveal definitive abnormalities. Since alterations in axon branching have been seen in neurons derived from animal models of other forms of HSP as well as motor neuron diseases, this may represent a common cellular pathogenic theme.
        
Title: Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1 Hanna MC, Blackstone C Ref: Neurogenetics, 10:217, 2009 : PubMed
Mast syndrome (SPG21) is an autosomal-recessive complicated form of hereditary spastic paraplegia characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product acidic cluster protein 33 (ACP33)/maspardin underlies this disorder, likely causing loss of protein function. However, little is known about the function of maspardin. Here, we report that maspardin localizes prominently to cytoplasm as well as to membranes, possibly at trans-Golgi network/late endosomal compartments. Immunoprecipitation of maspardin with identification of coprecipitating proteins by mass spectrometry revealed the aldehyde dehydrogenase ALDH16A1 as an interacting protein. This interaction was confirmed using overexpressed proteins as well as by fusion protein pull down experiments, and these proteins colocalized in cells. Further studies of the function of ALDH16A1 and the role of the maspardin-ALDH16A1 interaction in neuronal cells may clarify the cellular pathogenesis of Mast syndrome.
        
Title: Differential brain transcriptome of beta4 nAChR subunit-deficient mice: is it the effect of the null mutation or the background strain? Kedmi M, Orr-Urtreger A Ref: Physiol Genomics, 28:213, 2007 : PubMed
Studies using mice with beta4 nicotinic acetylcholine receptor (nAChR) subunit deficiency (beta4-/- mice) helped reveal the roles of this subunit in bradycardiac response to vagal stimulation, nicotine-induced seizure activity and anxiety. To identify genes that might be related to beta4-containing nAChRs activity, we compared the mRNA expression profiles of brains from beta4-/- and wild-type mice using Affymetrix U74Av2 microarray. Seventy-seven genes significantly differentiated between these two experimental groups. Of them, the two most downregulated were spastic paraplegia 21 (human) homolog (Spg21) and 6-pyruvoyl-tetrahydropterin synthase (Pts) genes. Since the targeted mutagenesis of the beta4 nAChR subunit was done by using two mouse strains, 129SvEv and C57BL/6J, it is possible that the genes closely linked to the mutated beta4 gene represent the 129SvEv allele and not the control C57BL/6J-driven allele. We examined this possibility by using public database and quantitative RT-PCR. The expression levels of Spg21 and Pts genes that, like the beta4 gene, are localized on mouse chromosome 9, as well as the expression levels of other genes located on this chromosome, were dependent on the mouse background strain. The 67 differentially expressed genes that are not located on chromosome 9 were further analyzed for overrepresented functional annotations and transcription regulatory elements compared with the entire microarray. Genes encoding for proteins involved in tyrosine phosphatase activity, calcium ion binding, cell growth and/or maintenance, and chromosome organization were overrepresented. Our data enhance the understanding of the molecular interactions involved in the beta4 nAChR subunit function. They also emphasize the need for careful interpretation of expression microarray studies done on genetically manipulated animals.
Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.
Mast syndrome is an autosomal recessive, complicated form of hereditary spastic paraplegia with dementia that is present at high frequency among the Old Order Amish. Subtle childhood abnormalities may be present, but the main features develop in early adulthood. The disease is slowly progressive, and cerebellar and extrapyramidal signs are also found in patients with advanced disease. Patients have a thin corpus callosum and white-matter abnormalities, as seen on magnetic resonance imaging. Using an extensive Amish pedigree, we have mapped the Mast syndrome locus (SPG21) to a small interval of chromosome 15q22.31 that encompasses just three genes. Sequence analysis of the three transcripts revealed that all 14 affected cases were homozygous for a single base-pair insertion (601insA) in the acid-cluster protein of 33 kDa (ACP33) gene. This frameshift results in the premature termination (fs201-212X213) of the encoded product, which is designated "maspardin" (Mast syndrome, spastic paraplegia, autosomal recessive with dementia), and has been shown elsewhere to localize to intracellular endosomal/trans-Golgi transportation vesicles and may function in protein transport and sorting.
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
CD4 recruitment to T cell receptor (TCR)-peptide-major histocompatibility class II complexes is required for stabilization of low affinity antigen recognition by T lymphocytes. The cytoplasmic portion of CD4 is thought to amplify TCR-initiated signal transduction via its association with the protein tyrosine kinase p56(lck). Here we describe a novel functional determinant in the cytosolic tail of CD4 that inhibits TCR-induced T cell activation. Deletion of two conserved hydrophobic amino acids from the CD4 carboxyl terminus resulted in a pronounced enhancement of CD4-mediated T cell costimulation. This effect was observed in the presence or absence of p56(lck), implying involvement of alternative cytosolic ligands of CD4. A two-hybrid screen with the intracellular portion of CD4 identified a previously unknown 33-kDa protein, ACP33 (acidic cluster protein 33), as a novel intracellular binding partner of CD4. Since interaction with ACP33 is abolished by deletion of the hydrophobic CD4 C-terminal amino acids mediating repression of T cell activation, we propose that ACP33 modulates the stimulatory activity of CD4. Furthermore, we demonstrate that interaction with CD4 is mediated by the noncatalytic alpha/beta hydrolase fold domain of ACP33. This suggests a previously unrecognized function for alpha/beta hydrolase fold domains as a peptide binding module mediating protein-protein interactions.
        
Title: Mast syndrome: a recessively inherited form of presenile dementia with motor disturbances Cross HE Ref: Birth Defects Orig Artic Ser, 7:214, 1971 : PubMed
Title: The mast syndrome. A recessively inherited form of presenile dementia with motor disturbances Cross HE, McKusick VA Ref: Archives of Neurology, 16:1, 1967 : PubMed