Serine active site-containing protein 1. Mutations of SERAC1 causes MEGDEL syndrome, a recessive disorder of dystonia and deafness with encephalopathy and Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. Clinical features included psychomotor retardation, recurrent infections in infancy, hypoglycemia, spasticity, dystonia, sensorineural deafness, brain atrophy, and lesions on brain imaging. Laboratory studies showed increased serum lactate and alanine, urinary 3-MGA, mitochondrial oxidative phosphorylation defects, abnormal mitochondria, an abnormal phosphatidylglycerol and cardiolipin spectrum in fibroblasts, and abnormal accumulation of unesterified cholesterol within cells. old human-srac1.Only c-term PfamA PGAP1 390-549
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
1167delTCAG_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness D224G_human-SERAC1 : First missense mutation outside of SERAC1 lipase domain affecting intracellular cholesterol trafficking G339R_human-SERAC1 : A novel mutation in the SERAC1 gene correlates with the severe manifestation of the MEGDEL phenotype, as revealed by whole-exome sequencing G401D_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness G404E_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness G526E_human-SERAC1 : Novel mutations in SERAC1 gene in two Indian patients presenting with dystonia and intellectual disability G536fs_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness K104X_human-SERAC1 : MEGDEL Syndrome: Expanding the Phenotype and New Mutations L193Sfs_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness L233X_human-SERAC1 : Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1 L479del_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness L550SfsX19_human-SERAC1 : Novel mutations in SERAC1 gene in two Indian patients presenting with dystonia and intellectual disability P267LfsX10_human-SERAC1 : Two Turkish siblings with MEGDEL syndrome due to novel SERAC1 gene mutation Q642X_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness R148X_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness R368X_human-SERAC1 : SERAC1 deficiency causes complicated HSP: evidence from a novel splice mutation in a large family R68X_human-SERAC1 : Exome sequencing identifies a new mutation in SERAC1 in a patient with 3-methylglutaconic aciduria S156fs_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness S450dup_human-SERAC1 : Rapid Resolution of Blended or Composite Multigenic Disease in Infants by Whole-Exome Sequencing S498T_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness T147Rfs_human-SERAC1 : The Expanding MEGDEL Phenotype: Optic Nerve Atrophy, Microcephaly, and Myoclonic Epilepsy in a Child with SERAC1 Mutations V544fs_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness W438X_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness Y548X_human-SERAC1 : The clinical syndrome of dystonia with anarthria/aphonia c.1018delT_human-SERAC1 : MEGDEL Syndrome in a Child From Palestine: Report of a Novel Mutation in SERAC1 Gene c.128+4A>G_human-SERAC1 : Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1 c.1403+1G-C_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness c.1822_1828+10delins9_human-SERAC1 : Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness c.609+5_609+8del_human-SERAC1 : MEGDEL Syndrome: Expanding the Phenotype and New Mutations c.91+6T>C_human-SERAC1 : SERAC1 deficiency causes complicated HSP: evidence from a novel splice mutation in a large family
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA ADVLFIHGLMGAAFKTWRQQDSEQAVIEKPMEDEDRYTTCWPKTWLAKDC PALRIISVEYDTSLSDWRARCPMERKSIAFRSNELLRKLRAAGVGDRPVV WISHSMGGLLVKKMLLEASTKPEMSTVINNTRGIIFYSVPHHGSRLAEYS VNIRYLLFPSLEVKELSKDSPALKTLQDDFLEFAKDKNFQVLNFVETLPT YIGSMIKLHVVPVESADLGIGDLIPVDVNHLNICKPKKKDAFLYQRTLQF IREALAKDLEN
References
20 moreTitle: Novel mutations in SERAC1 gene in two Indian patients presenting with dystonia and intellectual disability Radha Rama Devi A, Lingappa L Ref: Eur Journal of Medical Genetics, 61:100, 2018 : PubMed
In this study we present the first two cases from India of a rare inborn error of metabolism manifesting as dystonia and 3-methylglutaconic aciduria and a Leigh like lesions in the brain MRI associated with SERAC1 gene mutation, a phenotype characteristic of MEGDEL syndrome. A four base pair duplication in exon 15 i.e.NM_032861.3 (SERAC1) c. 1643_1646 dup ATCT (p.(Leu550SerfsX19)) and another with a homozygous missense variation in exon 15 i.e. NM_032861.3 (SERAC1) c.1709 G > A (p.(Gly526Glu)) were detected and both were novel mutations. Hepatopathy was observed in the neonatal period with lactic acidosis in one child and at the age of 5yrs in the other. These cases add to the existing number of patients identified till today and additional mutations in the SERAC1 gene.
OBJECTIVE: To demonstrate that mutations in the phosphatidylglycerol remodelling enzyme SERAC1 can cause juvenile-onset complicated hereditary spastic paraplegia (cHSP) clusters, thus adding SERAC1 to the increasing number of complex lipid cHSP genes. METHODS: Combined genomic and functional validation studies (whole-exome sequencing, mRNA, cDNA and protein), biomarker investigations (3-methyl-glutaconic acid, filipin staining and phosphatidylglycerols PG34:1/PG36:1), and clinical and imaging phenotyping were performed in six affected subjects from two different branches of a large consanguineous family. RESULTS: 5 of 6 affected subjects shared cHSP as a common disease phenotype. Three subjects presented with juvenile-onset oligosystemic cHSP, still able to walk several miles at age >10-20 years. This benign phenotypic cluster and disease progression is strikingly divergent to the severe infantile phenotype of all SERAC1 cases reported so far. Two family members showed a more multisystemic juvenile-onset cHSP, indicating an intermediate phenotype between the benign oligosystemic cHSP and the classic infantile SERAC1 cluster. The homozygous splice mutation led to loss of the full-length SERAC1 protein and impaired phosphatidylglycerol PG34:1/PG36:1 remodelling. These phosphatidylglycerol changes, however, were milder than in classic infantile-onset SERAC1 cases, which might partially explain the milder SERAC1 phenotype. CONCLUSIONS: Our findings add SERAC1 to the increasing list of complex lipid cHSP genes. At the same time they redefine the phenotypic spectrum of SERAC1 deficiency. It is associated not only with the severe infantile-onset 'Methylglutaconic aciduria, Deafness, Encephalopathy, Leigh-like' syndrome (MEGDEL syndrome), but also with oligosystemic juvenile-onset cHSP as part of the now unfolding SERAC1 deficiency spectrum.
Whole-exome sequencing identified multiple genetic causes in 2 infants with heterogeneous disease. Three gene defects in the first patient explained all symptoms, but manifestations were overlapping (blended phenotype). Two gene defects in the second patient explained nonoverlapping symptoms (composite phenotype). Whole-exome sequencing rapidly and comprehensively resolves heterogeneous genetic disease.
        
20 lessTitle: A novel mutation in the SERAC1 gene correlates with the severe manifestation of the MEGDEL phenotype, as revealed by whole-exome sequencing Alagoz M, Kherad N, Turkmen S, Bulut H, Yuksel A Ref: Exp Ther Med, 19:3505, 2020 : PubMed
The condition 3-methylglutaconic aciduria (3-MGA) with deafness, encephalopathy and Leigh-like (MEGDEL) syndrome, also known as 3-MGA IV, is one of a group of five rare metabolic disorders characterized by mitochondrial dysfunction, resulting in a series of phenotypic abnormalities. It is a rare, recessive inherited disorder with a limited number of cases reported worldwide; hence, it is important to study each case to understand its genetic complexity. An impaired activity of serine active site-containing protein 1 (SERAC1), caused by mutations, leads to defects in phosphatidylglycerol remodelling, which is important for mitochondrial function and intracellular cholesterol trafficking. In the present study, the patients (two male siblings of consanguineous Turkish parents) were analysed, whose multisystem dysfunctions, including an elevated 3-MGA concentration in early age, hearing loss and Leigh-like syndrome as determined by MRI, were consistent with MEGDEL syndrome. A novel mutation in the SERAC1 gene, in the upstream lipase domain, c.1015G>C (p.Gly339Arg) mutation located on exon 10 of the SERAC1, was identified and predicted to cause protein dysfunction. Furthermore, the results pointed towards a possible association between this mutation and the severity of MEGDEL syndrome.
        
Title: Novel mutations in SERAC1 gene in two Indian patients presenting with dystonia and intellectual disability Radha Rama Devi A, Lingappa L Ref: Eur Journal of Medical Genetics, 61:100, 2018 : PubMed
In this study we present the first two cases from India of a rare inborn error of metabolism manifesting as dystonia and 3-methylglutaconic aciduria and a Leigh like lesions in the brain MRI associated with SERAC1 gene mutation, a phenotype characteristic of MEGDEL syndrome. A four base pair duplication in exon 15 i.e.NM_032861.3 (SERAC1) c. 1643_1646 dup ATCT (p.(Leu550SerfsX19)) and another with a homozygous missense variation in exon 15 i.e. NM_032861.3 (SERAC1) c.1709 G > A (p.(Gly526Glu)) were detected and both were novel mutations. Hepatopathy was observed in the neonatal period with lactic acidosis in one child and at the age of 5yrs in the other. These cases add to the existing number of patients identified till today and additional mutations in the SERAC1 gene.
OBJECTIVE: To demonstrate that mutations in the phosphatidylglycerol remodelling enzyme SERAC1 can cause juvenile-onset complicated hereditary spastic paraplegia (cHSP) clusters, thus adding SERAC1 to the increasing number of complex lipid cHSP genes. METHODS: Combined genomic and functional validation studies (whole-exome sequencing, mRNA, cDNA and protein), biomarker investigations (3-methyl-glutaconic acid, filipin staining and phosphatidylglycerols PG34:1/PG36:1), and clinical and imaging phenotyping were performed in six affected subjects from two different branches of a large consanguineous family. RESULTS: 5 of 6 affected subjects shared cHSP as a common disease phenotype. Three subjects presented with juvenile-onset oligosystemic cHSP, still able to walk several miles at age >10-20 years. This benign phenotypic cluster and disease progression is strikingly divergent to the severe infantile phenotype of all SERAC1 cases reported so far. Two family members showed a more multisystemic juvenile-onset cHSP, indicating an intermediate phenotype between the benign oligosystemic cHSP and the classic infantile SERAC1 cluster. The homozygous splice mutation led to loss of the full-length SERAC1 protein and impaired phosphatidylglycerol PG34:1/PG36:1 remodelling. These phosphatidylglycerol changes, however, were milder than in classic infantile-onset SERAC1 cases, which might partially explain the milder SERAC1 phenotype. CONCLUSIONS: Our findings add SERAC1 to the increasing list of complex lipid cHSP genes. At the same time they redefine the phenotypic spectrum of SERAC1 deficiency. It is associated not only with the severe infantile-onset 'Methylglutaconic aciduria, Deafness, Encephalopathy, Leigh-like' syndrome (MEGDEL syndrome), but also with oligosystemic juvenile-onset cHSP as part of the now unfolding SERAC1 deficiency spectrum.
        
Title: [MEGDEL syndrome with an SERAC1 mutation: a case report] Chen J, Peng J, Yin F Ref: Zhonghua Er Ke Za Zhi, 55:394, 2017 : PubMed
Whole-exome sequencing identified multiple genetic causes in 2 infants with heterogeneous disease. Three gene defects in the first patient explained all symptoms, but manifestations were overlapping (blended phenotype). Two gene defects in the second patient explained nonoverlapping symptoms (composite phenotype). Whole-exome sequencing rapidly and comprehensively resolves heterogeneous genetic disease.
OBJECTIVES: In dystonia the formulation of a clinical syndrome is paramount to refine the list of etiologies. We here describe the rare association of dystonia with anarthria/aphonia, by examining a large cohort of patients, to provide a narrow field of underlying conditions and a practical algorithmic approach to reach diagnosis. METHODS: We retrospectively reviewed cases, which were evaluated between 2005 and 2014, to identify those with dystonia combined with marked anarthria and/or aphonia. We reviewed demographic information, clinical characteristics, as well as clinico-genetic investigations. We evaluated video material where available. RESULTS: From 860 cases with dystonia as the predominant motor feature, we identified 32 cases (3.7%) with anarthria/aphonia. Age at neurological symptom onset was variable, but the majority of cases (n = 20) developed symptoms within their first eight years of life. A conclusive diagnosis was reached in 27 cases. Monoamine neurotransmitter disorders, neurodegeneration with brain iron accumulation syndromes, hypomyelination with atrophy of the basal ganglia and cerebellum, and syndromes with inborn errors of metabolism were the most common diagnoses. Brain MRI was crucial for reaching a diagnosis by examining the structural integrity of the basal ganglia, the cerebral cortex, brain myelination and whether there was abnormal metal deposition. Pathophysiological mechanisms underlying anarthria/aphonia included dystonia, corticobulbar involvement, apraxia and abnormalities of brain development. CONCLUSIONS: The spectrum of conditions that may present with the syndrome of dystonia with anarthria/aphonia is broad. Various causes may account for the profound speech disturbance. A practical brain MRI-based algorithm is provided to aid the diagnostic procedure.
BACKGROUND: MEGDEL (3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome) syndrome is a mitochondrial disorder associated with recessive mutations in SERAC1. OBJECTIVES: To report transient neonatal renal findings in MEGDEL syndrome. RESULTS: This 7 year-old girl was the first child of consanguineous Turkish parents. She exhibited an acute neonatal deterioration with severe lactic acidosis and liver failure. Initial evaluation revealed massive polyuria and renal failure with 3-methylglutaconic aciduria. Symptoms and biological findings progressively improved with symptomatic treatment but lactic acidosis and high lactate to pyruvate ratio along with 3-methylglutaconic aciduria persisted. At 8 months of age, a subacute neurological degradation occurred with severe hypotonia, dystonia with extrapyramidal movements and failure to thrive. Brain MRI revealed basal ganglia lesions suggestive of Leigh syndrome. At 3 years of age, sensorineural deafness was documented. MEGDEL syndrome was further confirmed by the identification of an already reported homozygous mutation in SERAC1. CONCLUSION: Transient neonatal polyuria and renal failure have not been reported to date in SERAC1 defective patients. Such neonatal kidney findings expand the clinical spectrum of MEGDEL syndrome.
BACKGROUND: Whole-exome sequencing (WES) has led to an exponential increase in identification of causative variants in mitochondrial disorders (MD). METHODS: We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family. RESULTS: Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Criteria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecular diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involvement. Mutations in CLPB, SERAC1, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as a discriminative feature. New MD-related candidate gene (NDUFB8) is under verification. CONCLUSIONS: We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in children, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likelihood expressed by the MDC scale.
We report the clinical and genetic findings in a Spanish boy who presented MEGDEL syndrome, a very rare inborn error of metabolism. Whole-exome sequencing uncovered a new homozygous mutation in the serine active site containing 1 (SERAC1) gene, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Functional studies in patient fibroblasts showed that p.D224G mutation affects the intracellular cholesterol trafficking. Only three missense mutations in this gene have been described before, being p.D224G the first missense mutation outside of the SERAC1 serine-lipase domain. Therefore, we conclude that the defect in cholesterol trafficking is not limited to alterations in this specific part of the protein.
        
Title: MEGDEL Syndrome in a Child From Palestine: Report of a Novel Mutation in SERAC1 Gene Dweikat IM, Abdelrazeq S, Ayesh S, Jundi T Ref: Journal of Child Neurology, 30:1053, 2015 : PubMed
We report the first Palestinian child manifesting with 3-methylglutaconic aciduria psychomotor delay, muscle hypotonia, sensori-neural deafness, and Leigh-like lesions on brain magnetic resonance imaging (MRI), a clinical phenotype that is characteristic of MEGDEL syndrome. MEGDEL syndrome was recently found to be caused by mutations in SERAC1, encoding a protein essential for mitochondrial function, phospholipid remodeling, and intracellular cholesterol trafficking. We identified a novel homozygous mutation in SERAC1 gene (c.1018delT) that generates frame shift and premature termination of protein translation. Plasma and cerebrospinal fluid lactate, plasma alanine, and respiratory chain complexes in fresh muscle were normal. This report further expands the genetic spectrum of MEGDEL syndrome and adds to the evidence that it is associated with variable patterns of respiratory chain abnormalities.
Association of 3-methylglutaconic aciduria with impaired oxidative phosphorylation, deafness, encephalopathy, leigh-like lesions on brain imaging, progressive spasticity and dystonia defined as a distinct entity under the name of MEGDEL syndrome. It is an autosomal recessive disorder due to mutation in the serine active site-containing protein 1 (SERAC1). SERAC1 is localized at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. It was identified as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking. Here we report two new Turkish sibling patients affected with MEGDEL syndrome due to SERAC1 gene mutation. The patients were presented with 3-methylglutaconic acid and 3-methylglutaric aciduria, microcephaly, growth retardation, dysmorphic features, severe sensorineural deafness, progressive spasticity, dystonia, seizures, basal ganglia involvement. Metabolic acidosis, mild hyperammonemia and lactic acidemia were accompanied with clinical findings in newborn period.
Pediatric movement disorders are still a diagnostic challenge, as many patients remain without a (genetic) diagnosis. Magnetic resonance imaging (MRI) pattern recognition can lead to the diagnosis. MEGDEL syndrome (3-MethylGlutaconic aciduria, Deafness, Encephalopathy, Leigh-like syndrome MIM #614739) is a clinically and biochemically highly distinctive dystonia deafness syndrome accompanied by 3-methylglutaconic aciduria, severe developmental delay, and progressive spasticity. Mutations are found in SERAC1, encoding a phosphatidylglycerol remodeling enzyme essential for both mitochondrial function and intracellular cholesterol trafficking. Based on the homogenous phenotype, we hypothesized an accordingly characteristic MRI pattern. A total of 43 complete MRI studies of 30 patients were systematically reevaluated. All patients presented a distinctive brain MRI pattern with five characteristic disease stages affecting the basal ganglia, especially the putamen. In stage 1, T2 signal changes of the pallidum are present. In stage 2, swelling of the putamen and caudate nucleus is seen. The dorsal putamen contains an "eye" that shows no signal alteration and (thus) seems to be spared during this stage of the disease. It later increases, reflecting progressive putaminal involvement. This "eye" was found in all patients with MEGDEL syndrome during a specific age range, and has not been reported in other disorders, making it pathognomonic for MEDGEL and allowing diagnosis based on MRI findings.
        
Title: The Expanding MEGDEL Phenotype: Optic Nerve Atrophy, Microcephaly, and Myoclonic Epilepsy in a Child with SERAC1 Mutations Lumish HS, Yang Y, Xia F, Wilson A, Chung WK Ref: JIMD Rep, 16:75, 2014 : PubMed
The inborn errors of metabolism associated with 3-methylglutaconic aciduria are a diverse group of disorders characterized by the excretion of 3-methylglutaconic and 3-methylglutaric acids in the urine. Mutations in several genes have been identified in association with 3-methylglutaconic aciduria. We describe a patient of Saudi Arabian descent with 3-methylglutaconic aciduria, sensorineural hearing loss, encephalopathy, and Leigh-like pattern on MRI (MEGDEL syndrome), as well as developmental delay and developmental regression, bilateral optic nerve atrophy, microcephaly, and myoclonic epilepsy. The patient had an earlier age of onset of optic atrophy than previously described in other MEGDEL syndrome patients. Whole exome sequencing revealed two loss-of-function mutations in SERAC1 in trans: c.438delC (p.T147Rfs*22) and c.442C>T (p.R148X), confirmed by Sanger sequencing. One of these mutations is novel (c.438delC). This case contributes to refining the MEGDEL phenotype.
3-Methylglutaconic aciduria (3-MGCA) type IV is defined as a heterogeneous group of inborn errors featuring in common 3-MGCA and associated with primary mitochondrial dysfunction leading to a spectrum of multisystem conditions. We studied four patients who presented at birth with a clinical picture simulating a primary mitochondrial hepatic disorder consistent with the MEGDEL syndrome including 3-MGCA, sensorineural deafness, encephalopathy and a brain magnetic resonance imaging with signs of Leigh disease. All affected children displayed biochemical features consistent with mitochondrial OXPHOS dysfunction including hepatic mitochondrial DNA depletion in one patient. Homozygosity mapping identified a candidate locus on 6q25.2-6q26. Using whole exome sequencing, we identified two novel homozygous mutations in SERAC1 recently reported to harbor mutations in MEGDEL syndrome. Both mutations were found to lead to decreased or absent expression of SERAC1. The present findings indicate that infantile hepatopathy is a cardinal feature of MEGDEL syndrome. We thus propose to rename the disease MEGDHEL syndrome.
3-Methylglutaconic aciduria (3-MGA-uria) is a heterogeneous group of syndromes characterized by an increased excretion of 3-methylglutaconic and 3-methylglutaric acids. Five types of 3-MGA-uria (I to V) with different clinical presentations have been described. Causative mutations in TAZ, OPA3, DNAJC19, ATP12, ATP5E, and TMEM70 have been identified. After excluding the known genetic causes of 3-MGA-uria we used exome sequencing to investigate a patient with Leigh syndrome and 3-MGA-uria. We identified a homozygous variant in SERAC1 (c.202C>T; p.Arg68*), that generates a premature stop codon at position 68 of SERAC1 protein. Western blot analysis in patient's fibroblasts showed a complete absence of SERAC1 that was consistent with the prediction of a truncated protein and supports the pathogenic role of the mutation. During the course of this project a parallel study identified mutations in SERAC1 as the genetic cause of the disease in 15 patients with MEGDEL syndrome, which was compatible with the clinical and biochemical phenotypes of the patient described here. In addition, our patient developed microcephaly and optic atrophy, two features not previously reported in MEGDEL syndrome. We highlight the usefulness of exome sequencing to reveal the genetic bases of human rare diseases even if only one affected individual is available.
Increased urinary 3-methylglutaconic acid excretion is a relatively common finding in metabolic disorders, especially in mitochondrial disorders. In most cases 3-methylglutaconic acid is only slightly elevated and accompanied by other (disease specific) metabolites. There is, however, a group of disorders with significantly and consistently increased 3-methylglutaconic acid excretion, where the 3-methylglutaconic aciduria is a hallmark of the phenotype and the key to diagnosis. Until now these disorders were labelled by roman numbers (I-V) in the order of discovery regardless of pathomechanism. Especially, the so called "unspecified" 3-methylglutaconic aciduria type IV has been ever growing, leading to biochemical and clinical diagnostic confusion. Therefore, we propose the following pathomechanism based classification and a simplified diagnostic flow chart for these "inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature". One should distinguish between "primary 3-methylglutaconic aciduria" formerly known as type I (3-methylglutaconyl-CoA hydratase deficiency, AUH defect) due to defective leucine catabolism and the--currently known--three groups of "secondary 3-methylglutaconic aciduria". The latter should be further classified and named by their defective protein or the historical name as follows: i) defective phospholipid remodelling (TAZ defect or Barth syndrome, SERAC1 defect or MEGDEL syndrome) and ii) mitochondrial membrane associated disorders (OPA3 defect or Costeff syndrome, DNAJC19 defect or DCMA syndrome, TMEM70 defect). The remaining patients with significant and consistent 3-methylglutaconic aciduria in whom the above mentioned syndromes have been excluded, should be referred to as "not otherwise specified (NOS) 3-MGA-uria" until elucidation of the underlying pathomechanism enables proper (possibly extended) classification.
Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking.
In this paper, we describe a distinct clinical subtype of 3-methylglutaconic aciduria. 3-Methylglutaconic aciduria is a group of different metabolic disorders biochemically characterized by increased urinary excretion of 3-methylglutaconic acid. We performed biochemical and genetic investigations, including urine organic acid analysis, NMR spectroscopy, measurement of 3-methylglutaconyl-CoA hydratase activity, cardiolipin levels, OPA3 gene analysis and measurement of the oxidative phosphorylation in four female patients with 3-methylglutaconic aciduria. 3-Methylglutaconic aciduria type I, Barth syndrome, and Costeff syndrome were excluded as the activity of 3-methylglutaconyl-CoA hydratase, the cardiolipin levels, and molecular analysis of the OPA3 gene, respectively, showed no abnormalities. The children presented with characteristic association of hearing loss and the neuro-radiological evidence of Leigh disease. They also had neonatal hypotonia, recurrent lactic acidemia, episodes with hypoglycemia and severe recurrent infections, feeding difficulties, failure to thrive, developmental delay, and progressive spasticity with extrapyramidal symptoms. Our patients were further biochemically characterized by a mitochondrial dysfunction and persistent urinary excretion of 3-methylglutaconic acid.
The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.
As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.
Chromosome 6 is a metacentric chromosome that constitutes about 6% of the human genome. The finished sequence comprises 166,880,988 base pairs, representing the largest chromosome sequenced so far. The entire sequence has been subjected to high-quality manual annotation, resulting in the evidence-supported identification of 1,557 genes and 633 pseudogenes. Here we report that at least 96% of the protein-coding genes have been identified, as assessed by multi-species comparative sequence analysis, and provide evidence for the presence of further, otherwise unsupported exons/genes. Among these are genes directly implicated in cancer, schizophrenia, autoimmunity and many other diseases. Chromosome 6 harbours the largest transfer RNA gene cluster in the genome; we show that this cluster co-localizes with a region of high transcriptional activity. Within the essential immune loci of the major histocompatibility complex, we find HLA-B to be the most polymorphic gene on chromosome 6 and in the human genome.