(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MLIFWTITLFLLGAAKGKEVCYEDLGCFSDTEPWGGTAIRPLKILPWSPE KIGTRFLLYTNENPNNFQILLLSDPSTIEASNFQMDRKTRFIIHGFIDKG DESWVTDMCKKLFEVEEVNCICVDWKKGSQATYTQAANNVRVVGAQVAQM LDILLTEYSYPPSKVHLIGHSLGAHVAGEAGSKTPGLSRITGLDPVEASF ESTPEEVRLDPSDADFVDVIHTDAAPLIPFLGFGTNQQMGHLDFFPNGGE SMPGCKKNALSQIVDLDGIWAGTRDFVACNHLRSYKYYLESILNPDGFAA YPCTSYKSFESDKCFPCPDQGCPQMGHYADKFAGRTSEEQQKFFLNTGEA SNFARWRYGVSITLSGRTATGQIKVALFGNKGNTHQYSIFRGILKPGSTH SYEFDAKLDVGTIEKVKFLWNNNVINPTLPKVGATKITVQKGEEKTVYNF CSEDTVREDTLLTLTPC
The existence of pancreatic lipase-related protein 1 (PLRP1) in vertebrates has been postulated based on the screening of pancreatic cDNA libraries from different species. In this paper, we report the presence of variable amounts of PLRP1 relative to colipase-dependent lipase (PL) in adults from several species. Only a very low lipase activity could be detected for native or recombinant PLRP1 using a large variety of substrates and conditions. Interestingly, this activity is dependent on the presence of bile salts and colipase and PLRP1 is shown to possess the same affinity as PL for colipase. Modelling investigations revealed some interesting differences between PLRP1 and PL, notably concerning substitutions in the C-terminal domain which might affect the bending motion of this domain relative to the N-terminal domain in PLRP1. The potential impact of these differences on the lack of lipase activity of PLRP1 was investigated using chimeric proteins designed by C-terminal domain exchange between dog PLRP1 and horse PL. Analysis of the catalytic properties of the chimera clearly indicated that the C-terminal domain exchange neither inactivates the horse enzyme nor results in an active dog PLRP1. From these findings, it can be concluded that the PLRP1 C-terminal domain is fully functional with respect to colipase binding. The lack of lipase activity or the still undetermined function of PLRP1 is likely to result mainly from particular features of the N-terminal domain.
Pancreatic lipase-related protein 1 (PLRP1) was purified from human, canine, porcine and rat pancreatic juices. The four PLRP1s were identified using microsequencing methods after performing gel filtration on Ultrogel AcA-54 followed by chromatography on Heparin-Sepharose cation-exchanger. Polyclonal antibodies specific to human PLRP1 (HPLRP1) were raised in the rabbit using a synthetic decapeptide from HPLRP1. The results of Western blotting analysis showed that these antibodies recognized native HPLRP1 and recombinant HPLRP1 produced by insect cells, and cross-reacted only with rat PLRP1 (RPLRP1). No significant lipolytic activity was observed with native canine PLRP1 and recombinant HPLRP1 on various glycerides, phospholipid and vitamin esters, or on cholesterol esters. It was established for the first time that this protein is secreted in variable amounts by the adult exocrine pancreas of several species.
        
Title: Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity Giller T, Buchwald P, Blum-Kaelin D, Hunziker W Ref: Journal of Biological Chemistry, 267:16509, 1992 : PubMed
We have isolated cDNAs coding for two novel human pancreatic lipase (hPL)-related human proteins, referred to as hPL-related proteins 1 and 2 (hPLRP1 and hPLRP2) and for hPL. The two novel proteins show an amino acid sequence identity to hPL of 68 and 65% for hPLRP1 and 2, respectively. All three proteins are secreted into the medium after transfection of COS cells with the corresponding cDNAs. The size of the three expressed proteins is similar and ranges between 45 and 50 kDa. The expressed hPLRP2 shows a lipolytic activity that is, however, in contrast to that of hPL only marginally dependent on the presence of colipase, whereas hPLRP1 shows no activity in this assay. A Northern analysis of normal human pancreas mRNA shows that the expression levels of hPLRP1 and hPLRP2 are about 4-fold and 24-fold lower, respectively, than that of hPL. hPLRP2 is, additionally, most closely related to a lipase reported to be expressed in mouse T-cells. A comparison of the sequences of the three proteins with sequences described as pancreatic lipases of other animal species shows three subfamilies of closer kinship. This suggests that the two novel proteins also exist in other species and that some of the sequences reported to be pancreatic lipase might more likely be the orthologues of hPLRP1 or hPLRP2 in those species.
Pancreatic triglyceride lipase (PTL) and its cofactor, colipase, are required for efficient dietary triglyceride digestion. In addition to PTL, pancreatic acinar cells synthesize two pancreatic lipase-related proteins (PLRP1 and PLRP2), which have a high degree of sequence and structural homology with PTL. The lipase activity of PLRP2 has been confirmed, whereas no known triglyceride lipase activity has been detected with PLRP1 up to now. To explore the biological functions of PLRP1 in vivo, we generated Plrp1 knockout (KO) mice in our laboratory. Here we show that the Plrp1 KO mice displayed mature-onset obesity with increased fat mass, impaired glucose clearance and the resultant insulin resistance. When fed on high-fat (HF) diet, the Plrp1 KO mice exhibited an increased weight gain, fat mass and severe insulin resistance compared with wild-type mice. Pancreatic juice extracted from Plrp1 KO mice had greater ability to hydrolyze triglyceride than that from the wild-type littermates. We propose that PLRP1 may function as a metabolic inhibitor in vivo of PLT-colipase-mediated dietary triglyceride digestion and provides potential anti-obesity targets for developing new drugs.
The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence.
The existence of pancreatic lipase-related protein 1 (PLRP1) in vertebrates has been postulated based on the screening of pancreatic cDNA libraries from different species. In this paper, we report the presence of variable amounts of PLRP1 relative to colipase-dependent lipase (PL) in adults from several species. Only a very low lipase activity could be detected for native or recombinant PLRP1 using a large variety of substrates and conditions. Interestingly, this activity is dependent on the presence of bile salts and colipase and PLRP1 is shown to possess the same affinity as PL for colipase. Modelling investigations revealed some interesting differences between PLRP1 and PL, notably concerning substitutions in the C-terminal domain which might affect the bending motion of this domain relative to the N-terminal domain in PLRP1. The potential impact of these differences on the lack of lipase activity of PLRP1 was investigated using chimeric proteins designed by C-terminal domain exchange between dog PLRP1 and horse PL. Analysis of the catalytic properties of the chimera clearly indicated that the C-terminal domain exchange neither inactivates the horse enzyme nor results in an active dog PLRP1. From these findings, it can be concluded that the PLRP1 C-terminal domain is fully functional with respect to colipase binding. The lack of lipase activity or the still undetermined function of PLRP1 is likely to result mainly from particular features of the N-terminal domain.
        
Title: Pancreatic lipase-related protein type 1: a double mutation restores a significant lipase activity Crenon I, Jayne S, Kerfelec B, Hermoso J, Pignol D, Chapus C Ref: Biochemical & Biophysical Research Communications, 246:513, 1998 : PubMed
Besides the active pancreatic lipase (PL) which plays a major role in dietary fat digestion, the presence of a pancreatic lipase related protein 1 (PLRP1) displaying a very low lipolytic activity has been reported in vertebrates. It has been suggested that the reduced lipolytic activity of PLRP1 results from specific features of the N-terminal domain of the protein. Therefore, based on sequence comparison between PL and PLRP1 and modelling experiments, several residues located in the vicinity of the active site pocket of both enzymes have been mutated. In this paper, we report that, as regards to PL, two substitutions in positions 179 and 181 in PLRP1 account for the very low lipolytic activity of the protein. Indeed, substituting these residues (V179 and A181) in PLRP1 for those found in PL (A179 and P181), restores a significant lipolytic activity for PLRP1.
Pancreatic lipase-related protein 1 (PLRP1) was purified from human, canine, porcine and rat pancreatic juices. The four PLRP1s were identified using microsequencing methods after performing gel filtration on Ultrogel AcA-54 followed by chromatography on Heparin-Sepharose cation-exchanger. Polyclonal antibodies specific to human PLRP1 (HPLRP1) were raised in the rabbit using a synthetic decapeptide from HPLRP1. The results of Western blotting analysis showed that these antibodies recognized native HPLRP1 and recombinant HPLRP1 produced by insect cells, and cross-reacted only with rat PLRP1 (RPLRP1). No significant lipolytic activity was observed with native canine PLRP1 and recombinant HPLRP1 on various glycerides, phospholipid and vitamin esters, or on cholesterol esters. It was established for the first time that this protein is secreted in variable amounts by the adult exocrine pancreas of several species.
        
Title: Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity Giller T, Buchwald P, Blum-Kaelin D, Hunziker W Ref: Journal of Biological Chemistry, 267:16509, 1992 : PubMed
We have isolated cDNAs coding for two novel human pancreatic lipase (hPL)-related human proteins, referred to as hPL-related proteins 1 and 2 (hPLRP1 and hPLRP2) and for hPL. The two novel proteins show an amino acid sequence identity to hPL of 68 and 65% for hPLRP1 and 2, respectively. All three proteins are secreted into the medium after transfection of COS cells with the corresponding cDNAs. The size of the three expressed proteins is similar and ranges between 45 and 50 kDa. The expressed hPLRP2 shows a lipolytic activity that is, however, in contrast to that of hPL only marginally dependent on the presence of colipase, whereas hPLRP1 shows no activity in this assay. A Northern analysis of normal human pancreas mRNA shows that the expression levels of hPLRP1 and hPLRP2 are about 4-fold and 24-fold lower, respectively, than that of hPL. hPLRP2 is, additionally, most closely related to a lipase reported to be expressed in mouse T-cells. A comparison of the sequences of the three proteins with sequences described as pancreatic lipases of other animal species shows three subfamilies of closer kinship. This suggests that the two novel proteins also exist in other species and that some of the sequences reported to be pancreatic lipase might more likely be the orthologues of hPLRP1 or hPLRP2 in those species.
A 5 1/2-year-old boy is reported with congenital lipase deficiency and the presence of colipase. He presented with greasy-oily stools since infancy, but growth and development have been normal. No other cause for exocrine pancreatic insufficiency could be found. Intraluminal (jejunal) fat digestion was defective, but some hydrolytic products of dietary long-chain triglyceride were present. The di- and monoglycerides were probably generated by pregastric lipases, although this was not measured directly. Amylase activity was depressed to some extent, a finding which could not be explained. Our studies do not clarify the issue of whether or not the absence of pancreatic lipase is explained as an inherited defect of lipase synthesis, or if it was acquired in utero or in the early postnatal period.