Homo sapiens (Human) esterase D (EC 3.1.1.1) formylglutathione hydrolase
Comment
Q9BVJ2 (Homo sapiens (Human) similar to esterase 10) one aa different from P10768 Human esterase D (hEstD),1 also called S-formylglutathione hydrolase (SFGH, EC 3.1.2.12), is a ubiquitous intracellular carboxylesterase (CE). hEstD can be found in blood cells and most human tissues and is one of the major CE activities detectable in cytosolic fractions of human liver. SFGH hydrolyzes a range of uncharged ester substrates in vitro, including p-nitrophenyl acetate (pNPA) and 4-methylumbelliferyl acetate. EstD is a thioesterase involved in the removal of genotoxic formaldehyde via a glutathione-dependent reaction. The enzyme may also play a role in xenobiotic metabolism. EstD can be induced in human cells by exposure to methylmethane sulfonate or phenobarbital
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MALKQISSNKCFGGLQKVFEHDSVELNCKMKFAVYLPPKAETGKCPALYW LSGLTCTEQNFISKSGYHQSASEHGLVVIAPDTSPRGCNIKGEDESWDFG TGAGFYVDATEDPWKTNYRMYSYVTEELPQLINANFPVDPQRMSIFGHSM GGHGALICALKNPGKYKSVSAFAPICNPVLCPWGKKAFSGYLGTDQSKWK AYDATHLVKSYPGSQLDILIDQGKDDQFLLDGQLLPDNFIAACTEKKIPV VFRLQEGYDHSYYFIATFITDHIRHHAKYLNA
References
6 moreTitle: Esterase D interacts with metallothionein 2A and inhibits the migration of A549 lung cancer cells in vitro Yao W, Chen X, Cui X, Zhou B, Zhao B, Lin Z, Miao J Ref: Journal of Cellular Biochemistry, :, 2023 : PubMed
Esterase D (ESD) is a nonspecific esterase widely distributed in various organisms. ESD plays an important role in regulating cholesterol efflux, inhibiting viral replication and lung cancer growth. MT2A (metallothionein 2A) is the most important isoform of metallothionein (MTs) in human and high expression of MT2A in tumors represents poor prognosis and metastatic behavior. However, there are no reports about the molecular mechanism of ESD in the regulation of tumor metastasis. In this study, we found for the first time that activation ESD promoted its interaction with MT2A and decreased the protein level of MT2A, which resulting in the concentration of free zinc ions up-regulated, and inhibited the migration of A549 lung cancer cells in vitro.
The primary neuroendocrine interface, hypothalamus and pituitary, together with adrenals, constitute the major axis responsible for the maintenance of homeostasis and the response to the perturbations in the environment. The gene expression profiling in the human hypothalamus-pituitary-adrenal axis was catalogued by generating a large amount of expressed sequence tags (ESTs), followed by bioinformatics analysis (http://www.chgc.sh.cn/ database). Totally, 25,973 sequences of good quality were obtained from 31,130 clones (83.4%) from cDNA libraries of the hypothalamus, pituitary, and adrenal glands. After eliminating 5,347 sequences corresponding to repetitive elements and mtDNA, 20,626 ESTs could be assembled into 9, 175 clusters (3,979, 3,074, and 4,116 clusters in hypothalamus, pituitary, and adrenal glands, respectively) when overlapping ESTs were integrated. Of these clusters, 2,777 (30.3%) corresponded to known genes, 4,165 (44.8%) to dbESTs, and 2,233 (24.3%) to novel ESTs. The gene expression profiles reflected well the functional characteristics of the three levels in the hypothalamus-pituitary-adrenal axis, because most of the 20 genes with highest expression showed statistical difference in terms of tissue distribution, including a group of tissue-specific functional markers. Meanwhile, some findings were made with regard to the physiology of the axis, and 200 full-length cDNAs of novel genes were cloned and sequenced. All of these data may contribute to the understanding of the neuroendocrine regulation of human life.
The gene encoding human esterase D (EsD), a member of the nonspecific esterase family, is a useful genetic marker for retinoblastoma (RB) and Wilson's disease. Previously we identified a cDNA clone from this gene and determined its chromosomal location. In this report, we present the complete cDNA sequence of the human EsD gene. A long open reading frame encoded a predicted protein of 282 amino acids with molecular weight of 30 kD. A computer-assisted search of a protein sequence data base revealed homology with two other esterases, acetylcholinesterase of Torpedo and esterase-6 of Drosophila. Homologous region were centered around presumptive active sites, suggesting that the catalytic domains of the esterases are conserved during evolution. Three genomic clones of this gene were also isolated and characterized by restriction mapping. At least ten exons were distributed over a 35-kb (kilobase pair) region; each exon contained an average of 100 basepairs (bp). A polymorphic site for Apa I, located within an intron of the esterase D gene, can be used to identify chromosome 13 carrying defective RB alleles within retinoblastoma families.
        
6 lessTitle: Esterase D interacts with metallothionein 2A and inhibits the migration of A549 lung cancer cells in vitro Yao W, Chen X, Cui X, Zhou B, Zhao B, Lin Z, Miao J Ref: Journal of Cellular Biochemistry, :, 2023 : PubMed
Esterase D (ESD) is a nonspecific esterase widely distributed in various organisms. ESD plays an important role in regulating cholesterol efflux, inhibiting viral replication and lung cancer growth. MT2A (metallothionein 2A) is the most important isoform of metallothionein (MTs) in human and high expression of MT2A in tumors represents poor prognosis and metastatic behavior. However, there are no reports about the molecular mechanism of ESD in the regulation of tumor metastasis. In this study, we found for the first time that activation ESD promoted its interaction with MT2A and decreased the protein level of MT2A, which resulting in the concentration of free zinc ions up-regulated, and inhibited the migration of A549 lung cancer cells in vitro.
        
Title: Crystal structure of human esterase D: a potential genetic marker of retinoblastoma Wu D, Li Y, Song G, Zhang D, Shaw N, Liu ZJ Ref: FASEB Journal, 23:1441, 2009 : PubMed
Retinoblastoma (RB), a carcinoma of the retina, is caused by mutations in the long arm of chromosome 13, band 13q14. The esterase D (ESD) gene maps at a similar location as the RB gene locus and therefore serves as a potential marker for the prognosis of retinoblastoma. Because very little is known about the structure and function of ESD, we determined the 3-dimensional structure of the enzyme at 1.5 A resolution using X-ray crystallography. ESD shows a single domain with an alpha/beta-hydrolase fold. A number of insertions are observed in the canonical alpha/beta-hydrolase fold. The active site is located in a positively charged, shallow cleft on the surface lined by a number of aromatic residues. Superimposition studies helped identify the typical catalytic triad residues--Ser-153, His264, and Asp230--involved in catalysis. Mutagenesis of any of the catalytic triad residues to alanine abolished the enzyme activity. Backbone amides of Leu54 and Met150 are involved in the formation of the oxyanion hole. Interestingly, a M150A mutation increased the enzyme activity by 62%. The structure of human ESD determined in this study will aid the elucidation of the physiological role of the enzyme in the human body and will assist in the early diagnosis of retinoblastoma.
Chromosome 13 is the largest acrocentric human chromosome. It carries genes involved in cancer including the breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes, is frequently rearranged in B-cell chronic lymphocytic leukaemia, and contains the DAOA locus associated with bipolar disorder and schizophrenia. We describe completion and analysis of 95.5 megabases (Mb) of sequence from chromosome 13, which contains 633 genes and 296 pseudogenes. We estimate that more than 95.4% of the protein-coding genes of this chromosome have been identified, on the basis of comparison with other vertebrate genome sequences. Additionally, 105 putative non-coding RNA genes were found. Chromosome 13 has one of the lowest gene densities (6.5 genes per Mb) among human chromosomes, and contains a central region of 38 Mb where the gene density drops to only 3.1 genes per Mb.
        
Title: Catalog of 680 variations among eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes in the Japanese population Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y Ref: J Hum Genet, 48:249, 2003 : PubMed
We screened DNAs from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes by directly sequencing the relevant genomic regions in their entirety except for repetitive elements. This approach identified 607 SNPs and 73 insertion/deletion polymorphisms among the 19 genes examined. Of the 607 SNPs, 284 were identified in CYP genes, 302 in esterase genes, and 21 in the other two genes ( GGT1, and TGM1); overall, 37 SNPs were located in 5' flanking regions, 496 in introns, 55 in exons, and 19 in 3' flanking regions. These variants should contribute to studies designed to investigate possible correlations between genotypes and phenotypes of disease susceptibility or responsiveness to drug therapy.
The primary neuroendocrine interface, hypothalamus and pituitary, together with adrenals, constitute the major axis responsible for the maintenance of homeostasis and the response to the perturbations in the environment. The gene expression profiling in the human hypothalamus-pituitary-adrenal axis was catalogued by generating a large amount of expressed sequence tags (ESTs), followed by bioinformatics analysis (http://www.chgc.sh.cn/ database). Totally, 25,973 sequences of good quality were obtained from 31,130 clones (83.4%) from cDNA libraries of the hypothalamus, pituitary, and adrenal glands. After eliminating 5,347 sequences corresponding to repetitive elements and mtDNA, 20,626 ESTs could be assembled into 9, 175 clusters (3,979, 3,074, and 4,116 clusters in hypothalamus, pituitary, and adrenal glands, respectively) when overlapping ESTs were integrated. Of these clusters, 2,777 (30.3%) corresponded to known genes, 4,165 (44.8%) to dbESTs, and 2,233 (24.3%) to novel ESTs. The gene expression profiles reflected well the functional characteristics of the three levels in the hypothalamus-pituitary-adrenal axis, because most of the 20 genes with highest expression showed statistical difference in terms of tissue distribution, including a group of tissue-specific functional markers. Meanwhile, some findings were made with regard to the physiology of the axis, and 200 full-length cDNAs of novel genes were cloned and sequenced. All of these data may contribute to the understanding of the neuroendocrine regulation of human life.
We have analyzed the esterase D (EsD) polymorphism at the nucleic acid level. Two common alleles, EsD1 and EsD2, are characterized by the substitution of one amino acid (Gly-to-Glu), which is caused by the point mutation of one nucleotide (G-to-A). Individuals exhibiting the EsD1 and EsD 2 phenotypes are homozygotes for EsD 1 and EsD 2 cDNAs, respectively. Individuals showing the EsD 2-1 phenotype have two kinds of cDNAs, viz., EsD 1 and EsD 2. The point mutation difference between the cDNAs of the EsD1 and EsD2 alleles results in a different SspI digestion site. A restriction fragment length polymorphism caused by this difference with respect to the SspI digestion site makes it possible to determine the EsD phenotype using DNA samples extracted from forensic materials with no EsD enzymatic activity.
The gene encoding human esterase D (EsD), a member of the nonspecific esterase family, is a useful genetic marker for retinoblastoma (RB) and Wilson's disease. Previously we identified a cDNA clone from this gene and determined its chromosomal location. In this report, we present the complete cDNA sequence of the human EsD gene. A long open reading frame encoded a predicted protein of 282 amino acids with molecular weight of 30 kD. A computer-assisted search of a protein sequence data base revealed homology with two other esterases, acetylcholinesterase of Torpedo and esterase-6 of Drosophila. Homologous region were centered around presumptive active sites, suggesting that the catalytic domains of the esterases are conserved during evolution. Three genomic clones of this gene were also isolated and characterized by restriction mapping. At least ten exons were distributed over a 35-kb (kilobase pair) region; each exon contained an average of 100 basepairs (bp). A polymorphic site for Apa I, located within an intron of the esterase D gene, can be used to identify chromosome 13 carrying defective RB alleles within retinoblastoma families.
        
Title: Molecular cloning of the human esterase D gene, a genetic marker of retinoblastoma Lee EY, Lee WH Ref: Proc Natl Acad Sci U S A, 83:6337, 1986 : PubMed
Retinoblastoma, the most common intraocular tumor, represents one of the prototypes of inheritable cancers. To elucidate the mechanisms that give rise to this tumor, the retinoblastoma gene (RB) must be molecularly cloned. The difficulty encountered in cloning the gene is that little of its function or structure is known. The human esterase D gene, on the other hand, has been localized cytogenetically to the same sub-band of chromosome 13q14:11 as the RB gene. The esterase D gene thus provides a convenient starting point for cloning the RB gene. In this communication, we describe the isolation of the esterase D cDNA clone. Its identification is based on three lines of evidence. This cDNA encodes a protein immunologically related to the esterase D protein. The deduced amino acid sequences of this clone contain sequences identical to the three CNBr-cleaved peptides of the esterase D protein. This clone is mapped to the chromosome 13q14 region by Southern genomic blotting using different deletion mutants. The availability of this clone should allow for the cloning of the RB gene by chromosome walking; the diagnosis of genetic defects such as retinoblastomas and Wilson disease, whose genes are closely linked to the esterase D gene; and the exploration of the large family of human esterase genes.
The study of recessive oncogenes such as those responsible for retinoblastoma and Wilms tumor is difficult because the gene products involved are unknown and because the diseases are not associated with unique cellular or molecular phenotypes suitable for genetic manipulation. Since the gene for esterase D (ESD) is known to be tightly linked to the retinoblastoma locus (RB1) in the q14.1 band of chromosome 13, we have cloned the ESD gene from a human cDNA library by using oligonucleotides specific for a partial amino acid sequence of the purified enzyme to provide a genetic marker for further studies on retinoblastoma. The putative ESD gene codes for a message of 1.2 kilobases, which is present in all cell types examined, and maps to 13q14.1, thus confirming that it is the ESD gene. Restriction enzyme analysis reveals a restriction fragment length polymorphism with Apa I; this polymorphism results from the heterozygosity of 32% of the individuals tested and is shown to be useful in identifying carriers of the mutation responsible for retinoblastoma. A preliminary screen of 24 retinoblastoma tumors by Southern blot did not reveal any homologous deletions or rearrangements of the ESD locus.