The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain contains the EH catalytic activity. The N-terminal domain, has high homology to the haloacid dehalogenase family of phosphatases (not alpha/beta hydrolase and not included in ESTHER 5MWA is a structure of this part of the protein). Only c-term PfamA Abhydrolase_1 286 540 N-term is HAD haloacid dehalogenase
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
A85-EsteraseD-FGH : human-ESD Homo sapiens (Human) esterase D (EC 3.1.1.1) formylglutathione hydrolase. ABHD6-Lip : human-ABHD6 Homo sapiens (Human) ABHD6 Monoacylglycerol lipase EC: 3.1.1.23. ABHD8 : human-ABHD8Homo sapiens (Human) Abhydrolase domain containing 8 (ABHD8) cDNA FLJ11743 fis, clone HEMBA1005517. ABHD10 : human-ABHD10Homo sapiens (Human) ABHDA ABHD10 Abhydrolase domain-containing protein 10, Mycophenolic acid acyl-glucuronide esterase, mitochondrial. ABHD11-Acetyl_transferase : human-ABHD11Homo sapiens (Human) (EC 3.3.2.3) Abhydrolase domain-containing protein 11 williams-beuren syndrome critical region protein 21. ABHD12-PHARC : human-ABHD12Homo sapiens (Human) abhydrolase domain-containing protein 12. Protein C20orf22, flj90542, CT022, 2-arachidonoylglycerol hydrolase, Monoacylglycerol lipase, human-ABHD12BHomo sapiens (Human) Abhydrolase domain-containing protein 12B ABHD12B protein c14orf29. ABHD13-BEM46 : human-ABHD13Homo sapiens (Human) C13orf6 Q7L211 ABHDD_HUMAN ABHD13 Abhydrolase domain-containing protein 13. ABHD16 : human-ABHD16AHomo sapiens (Human) Abhydrolase domain-containing protein 16A BAT5 (HLA-B-associated transcript 5) (NG26 protein) (G5) (PP199), human-ABHD16BHomo sapiens (Human) ABHD16B PS-PLA1 lipase activity. ABHD17-depalmitoylase : human-ABHD17AHomo sapiens (Human) Abhydrolase domain-containing protein FAM108A1, C19orf27 ABHD17A, human-ABHD17BHomo sapiens (Human) CGI-67 C9orf77 FAM108B1 protein Abhydrolase domain-containing protein FAM108B1, human-ABHD17CHomo sapiens (Human) Abhydrolase domain-containing protein FAM108C1 Q6PCB6 F108C_HUMAN. ABHD18 : human-ABHD18Homo sapiens (Human) ABHD18 C4orf29 CD029 hypothetical protein. abh_upf0017 : human-ABHD1Homo sapiens (Human) lung alpha/beta hydrolase 1, human-ABHD2Homo sapiens (Human) Monoacylglycerol lipase ABHD2 LABH2 LBH2 protein phps1-2, human-ABHD3Homo sapiens (Human) hypothetical 49.3 kda protein, human-ABHD15Homo sapiens (Human) ABH15 Abhydrolase domain-containing protein 15. ACHE : human-ACHE Homo sapiens (Human) acetylcholinesterase. Acidic_Lipase : human-LIPA Homo sapiens (Human) lysosomal acid lipase LICH_HUMAN gene LIPA, Lysosomal acid lipase/cholesteryl ester hydrolase (EC:3.1.1.13) LAL cholesterol esterase (wolman disease) Sebelipase, human-LIPF Homo sapiens (Human) human gastric lipase, human-LIPJHomo sapiens (Human) Lipase member J lipase-like, ab-hydrolase domain containing 1, human-LIPKHomo sapiens (Human) Lipase member K lipase-like, ab-hydrolase domain containing 2 LIPL2, human-LIPMHomo sapiens (Human) LIPM LIPL3 ba304i5.1, human-LIPNHomo sapiens (Human) lipase-like, Lipase-like abhydrolase domain-containing protein 4. ACPH_Peptidase_S9 : human-APEHHomo sapiens (Human) acylamino acid-releasing enzyme APH APEH. Acyl-CoA_Thioesterase : human-ACOT1Homo sapiens (Human) Inducible cytosolic acyl-coenzyme A thioester hydrolase Long chain Acyl-CoA hydrolase) (cte-i) (cte-ib), human-ACOT2 Homo sapiens (Human) peroxisomal long-chain Acyl-CoA thioesterase 2 (zap128) (protein for mgc:3983) mitochondrial (EC 3.1.2.2) CTE-1a, human-ACOT4 Homo sapiens (Human) Q8N9L9 Acyl-coenzyme A thioesterase 4, inducible (EC 3.1.2.2), human-ACOT6Homo sapiens (Human) Acyl-CoA thioesterase 6 (EC 3.1.2.2), human-BAATHomo sapiens (Human) bile acid CoA: amino acid n-acyltransferase (EC 3.1.2.2). Arb2_FAM172A : human-f172aHomo sapiens (Human).Cotranscriptional regulator Protein FAM172A. Arylacetamide_deacetylase : human-AADACHomo sapiens (Human) arylacetamide deacetylase, human-AADACL2Homo sapiens (Human) similar to arylacetamide deacetylase (aadac), human-AADACL3Homo sapiens (Human) AADACL3 arylacetamide deacetylase-like 3 ADCL3, human-AADACL4Homo sapiens (Human) Arylacetamide deacetylase-like 4, human-NCEH1Homo sapiens (Human) NCEH1 KIAA1363 AADACL1 neutral cholesterol ester hydrolase 1. BCHE : human-BCHE Homo sapiens (Human) butyrylcholinesterase. Carboxypeptidase_S10 : human-CPVLHomo sapiens (Human) carboxypeptidase, vitellogenic-like CP-Mac ou CPVL carboxypeptidase WUG, human-CTSA Homo sapiens (Human) protective protein associated with lysosomal beta-galactosidase ppt2 protein CTSA Cathepsin A, PPGB, human-SCPEP1Homo sapiens (Human) serine Retinoid-inducible serine carboxypeptidase RISC SCP1 (EC 3.4.16.-). Carb_B_Chordata : human-CES1 Homo sapiens (Human) carboxylesterase CES1 hCE1 & for monocyte/macrophage serine-esterase 1 egasyn, human-CES2Homo sapiens (Human) carboxylesterase hCE-2,iCE, hiCE, CES2 gene cDNA FLJ76104 Cocaine esterase, human-CES3Homo sapiens (Human) Carboxylesterase 3 (Brain) Liver carboxylesterase 31 homolog, human-CES4AHomo sapiens (Human) Carboxylesterase 4A Carboxylesterase 8, human-CES5AHomo sapiens (Human) est5a CES7 Cauxin Carboxylesterase-like urinary excreted protein homolog. CGI-58_ABHD5_ABHD4 : human-ABHD4Homo sapiens (Human) abhydrolase domain-containing protein 4 FLJ12816 similar to 2-hydroxymuconic semialdehyde hydrolase (EC 3.1.1.-), human-ABHD5 Homo sapiens (Human) 39.1 kDa Comparative gene identification 58 (CGI-58)/Alpha Beta Hydrolase Domain 5 (ABHD5). Cholesterol_esterase : human-CEL Homo sapiens (Human) bile-salt-activated lipase, BSSL BAL CEL CEH carboxyl ester lipase chr 9. CIB-CCG1-interacting-factor-B : human-ABHD14AHomo sapiens (Human) Abhydrolase domain-containing protein 14A srsq1913, human-CIB Homo sapiens (Human) Ccg1/TafII250-Interacting Factor B CIB MGC15429 Abhydrolase domain-containing protein 14B ABHD14B. lysine deacetylase. CMBL : human-CMBLHomo sapiens (Human) Carboxymethylenebutenolidase homolog. DPP4N_Peptidase_S9 : human-DPP4 Homo sapiens (Human) dipeptidyl peptidase IV (DPP4), T-cell activation antigen CD26, human-DPP6 Homo sapiens (Human) (dipeptidylpeptidase VI) (dppx), human-DPP8 Homo sapiens (Human) dipeptidyl peptidase 8 (DPP8), human-DPP9 Homo sapiens (Human) dipeptidyl peptidase 9 DPP9 DPRP2, human-DPP10 Homo sapiens (Human) DPP-10 Dipeptidyl peptidase IV-related protein-3 KIAA1492 protein (fragment), human-FAP Homo sapiens (Human) fibroblast activation protein alpha FAPalpha, integral membrane serine protease seprase FAPA, FAP, SEPR. Duf_676 : human-FAM135AHomo sapiens (Human) F135A DKFZp781H2319 FLJ20176 fis KIAA1411 previously human-F135A, human-FAM135BHomo sapiens (Human) F135B loc51059 c8orfk32 protein. Duf_726 : human-TMCO4Homo sapiens (Human) Transmembrane and coiled-coil domain-containing protein 4. Duf_829 : human-TMEM53Homo sapiens (Human) Transmembrane protein 53, FLJ22353, NET4. Epoxide_hydrolase : human-EPHX1Homo sapiens (Human) microsomal epoxide hydrolase HYEP mEH, epoxide hydratase EPHX1, human-EPHX3Homo sapiens (Human) Epoxide hydrolase 3 (EPHX3) Abhydrolase domain-containing protein 9 (ABHD9) FLJ22408, human-EPHX4Homo sapiens (Human) Epoxide hydrolase 4 EPHX4 ABHD7 EPHXRP Abhydrolase domain-containing protein 7. FSH1 : human-OVCA2Homo sapiens (Human) Candidate tumor suppressor in ovarian cancer. Hepatic_Lipase : human-LIPCHomo sapiens (Human) LIPC hepatic triacylglycerol lipase HTGL. Hormone-sensitive_lipase_like : human-LIPEHuman mRNA (Human) hormone sensitive lipase HSL. Hydrolase_RBBP9_YdeN : human-RBBP9 Homo sapiens (Human) Retinoblastoma-binding protein 9 and 10 (rbbp-10) (b5t overexpressed gene protein) (bog protein). Kynurenine-formamidase : human-AFMIDHomo sapiens (Human) Kynurenine formamidase. LIDHydrolase : human-LDAHHomo sapiens (Human) lipid droplet-associated hydrolase (LDAH) C2orf43. Lipase_3 : human-DAGLAHomo sapiens (Human) DAGLA Sn1-specific diacylglycerol lipase alpha DGL-alpha, neural stem cell-derived dendrite regulator KIAA0659, human-DAGLBHomo sapiens (Human) DAGLB Sn1-specific diacylglycerol lipase beta kccr13l FLJ36639. Lipoprotein_Lipase : human-LIPGHomo sapiens (Human) endothelial lipase LIPE_HUMAN flj43354, human-LPL Homo sapiens (Human) Lipoprotein lipase LPL, LIPD. LYsophospholipase_carboxylesterase : human-LYPLA1 Homo sapiens (Human) lysophospholipase I (LYPLA1) APT1, acyl-protein thioesterase 1 S-depalmitoylase, human-LYPLA2 Homo sapiens (Human) acyl-protein thioesterase dJ886K2.4 lysophospholipase II APT2, human-LYPLAL1 Homo sapiens (Human) LYPLAL1 26.3 kda protein lysophospholipase-like 1. Maspardin-ACP33-SPG21_like : human-SPG21Homo sapiens (Human) Maspardin spg21 acid cluster protein 33 ACP33 sbm-019 (gl010)flj24010 Maspardin. MEST-like : human-MESTHomo sapiens (Human) MEST mesoderm-specific transcript. Monoglyceridelipase_lysophospholip : human-MGLL Homo sapiens (Human) Monoglyceride lipase (MAGL) lysophospholipase homolog. Ndr_family : human-NDRG1 Homo sapiens (Human) N-myc downstream-regulated gene 1 protein (cap43,rit42, ndr1 DRG1, PROXY1, RTP, TDD5), human-NDRG2 Homo sapiens (Human) ndrg2 protein N-myc downstream-regulated gene 2 protein (syld709613 protein) ndr1-related protein 2, human-NDRG3 Homo sapiens (Human) ndrg3 protein ndr1-related development protein ndr3 otthump00000030883 otthump00000030882, human-NDRG4Homo sapiens (Human) NDRG4, N-myc downstream-regulated gene 4 protein (smap-8) flj42011 flj16174 flj44611. Neuroligin : human-NLGN1 Homo sapiens (Human) Neuroligin 1 KIAA1070 protein, human-NLGN2 Homo sapiens (Human) neuroligin 2 (KIAA1366), human-NLGN3Homo sapiens (Human) Neuroligin 3 KIAA1480, human-NLGN4X Homo sapiens (Human) Neuroligin-4, X-linked (HNLX) Neuroligin4 KIAA0951, human-NLGN4YHomo sapiens (Human) Neuroligin-4, Y-linked precursor (Neuroligin Y) KIAA0951. NLS3-Tex30 : human-KANSL3Homo sapiens (Human) KAT8 regulatory NSL complex subunit 3, Testis development protein PRTD, KIAA1310, PRTD, SI1, FLJ10081, NSL3, Rcd1, human-TEX30Homo sapiens (Human) testis expressed 30 C13orf27 chromosome 13 open reading frame 27. PAF-Acetylhydrolase : human-PAFAH2Homo sapiens (Human) (EC 3.1.1.47) platelet-activating factor acetylhydrolase 2, cytoplasmic (serine dependent phospholipase a2) (hsd-pla2), PAFAH2, PAFA2 PAF-AH, human-PLA2G7 Homo sapiens (Human) plasma PAF acetylhydrolase Phospholipase A2 groupe 7 PLA2G7 PAFAH PAF-AH Lp-PLA(2). Palmitoyl-protein_thioesterase : human-PPT1 Homo sapiens (Human) palmitoyl-protein thioesterase (PPT), human-PPT2 Homo sapiens (Human) 34.9 kda protein (palmitoyl-protein thioesterase-2). Pancreatic_lipase : human-PNLIP Homo sapiens (Human) triacylglycerol lipase (pancreatic lipase), human-PNLIPRP1 Homo sapiens (Human) pancreatic lipase related protein 1, human-PNLIPRP2 Homo sapiens (Human) pancreatic lipase related protein 2 PLRP2, human-PNLIPRP3Homo sapiens (Human) Pancreatic lipase-related protein 3. PC-sterol_acyltransferase : human-LCAT Homo sapiens (Human) phosphatidylcholine-sterol acyltransferase. Lecithin-cholesterol acyltransferase, human-PLA2G15 Homo sapiens (Human) Group XV phospholipase A2 lcat-like lysophospholipase (llpl) (unq341/pro540). Pectinacetylesterase-Notum : human-NOTUM Homo sapiens (Human) Protein notum homolog. PGAP1 : human-PGAP1Homo sapiens (Human)GPI inositol-deacylase PGAP1 117.8 kd protein in ste2-frs2 intergenic region, human-SERAC1Homo sapiens (Human) Protein SERAC1. Phospholipase : human-LIPHHomo sapiens (Human) membrane-bound phosphatidic acid-selective phospholipase a1-alpha, LPD lipase-related protein mPA-PLA1 alpha, human-LIPIHomo sapiens (Human) membrane-associated phosphatidic acid-selective phospholipase a1 beta mPA-PLA1 beta (LPD lipase) Cancer/testis antigen 17 CT17, human-PLA1AHomo sapiens (Human) Phospholipase A1 member A, phosphatidylserine-specific phospholipase A1 deltaC. PPase_methylesterase_euk : human-PPME1 Homo sapiens (Human) protein phosphatase PP2A methylesterase-1 (EC 3.1.1.-) (pme-1). Prolylcarboxypeptidase : human-DPP7 Homo sapiens (Human), Dipeptidyl peptidase 2, quiescent cell proline dipeptidase precursor, DPP7, DPP2, QPP, human-PRCP Homo sapiens (Human) Lysosomal Pro-X carboxypeptidase C prolylcarboxypeptidase , Angiotensinase C, Proline carboxypeptidase (EC3.4.16.2), human-PRSS16Homo sapiens (Human) PRSS16 protease, serine, 16 (thymus) TSSP thymus-specific serine protease precursor (EC 3.4.-.-). S9N_PPCE_Peptidase_S9 : human-PREP Homo sapiens (Human) Prolyl endopeptidase PE, Post-proline cleaving enzyme PPCE, prolyl oligopeptidase POP. S9N_PREPL_Peptidase_S9 : human-PREPL Homo sapiens (Human) PREPL Prolylendopeptidase-like KIAA0436. SERHL : human-SERHL2Homo sapiens (Human) serine hydrolase-like protein 2 SERHL2 chomosome 22. Thioesterase : human-FASN Homo sapiens (Human) FAS FASN Fatty acid synthase Thioesterase domain (EC 2.3.1.85), human-OLAH Homo sapiens (Human) s-acyl fatty acid synthase thioesterase, medium chain OLAH THEDC1 SAST (EC 3.1.2.14). Thyroglobulin : human-TG Homo sapiens (Human) Thyroglobulin TG Tg. Valacyclovir-hydrolase : human-BPHL Homo sapiens (Human) biphenyl hydrolase-like DJ40E16.6.3, breast epithelial mucin-associated antigen AG BPHL (mcnaa), Valacyclovir hydrolase VACVase
Molecular evidence
Database
1 mutation: human-EPHX2 109 structures(e.g. : 1S8O, 1VJ5, 1ZD2... more)(less) 1S8O: Human soluble Epoxide Hydrolase, 1VJ5: Human soluble Epoxide Hydrolase- N-cyclohexyl-N'-(4-iodophenyl)urea complex, 1ZD2: Human soluble Epoxide hydrolase 4-(3-cyclohexyluriedo)-ethanoic acid complex, 1ZD3: Human soluble Epoxide hydrolase 4-(3-cyclohexyluriedo)-butyric acid complex, 1ZD4: Human soluble Epoxide hydrolase 4-(3-cyclohexyluriedo)-hexanoic acid complex, 1ZD5: Human soluble Epoxide hydrolase 4-(3-cyclohexyluriedo)-heptanoic acid complex, 3ANS: Human soluble Epoxide hydrolase in complex with a synthetic inhibitor 1, 3ANT: Human soluble Epoxide hydrolase in complex with a synthetic inhibitor 1, 3I1Y: Crystal Structure of human soluble epoxide Hydrolase with inhibitor 33N, 3I28: Crystal Structure of human soluble epoxide Hydrolase with inhibitor 34N, 3KOO: Crystal Structure of soluble epoxide Hydrolase with inhibitor 24D, 3OTQ: Soluble Epoxide Hydrolase in complex with pyrazole antagonist, 3PDC: Crystal structure of hydrolase domain of human soluble epoxide hydrolase complexed with a benzoxazole inhibitor, 3WK4: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 6, 3WK5: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 7, 3WK6: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 8, 3WK7: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 9, 3WK8: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 10, 3WK9: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 1, 3WKA: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 2, 3WKB: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 3, 3WKC: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 4, 3WKD: Crystal structure of soluble epoxide hydrolase in complex with fragment inhibitor 5, 3WKE: Crystal structure of soluble epoxide hydrolase in complex with with t-AUCB, 4C4X: Crystal structure of human bifunctional epoxide hydroxylase 2 complexed with C9, 4C4Y: Crystal structure of human bifunctional epoxide hydroxylase 2 complexed with A4, 4C4Z: Crystal structure of human bifunctional epoxide hydroxylase 2 complexed with A8, 4HAI: Crystal structure of human soluble human epoxide hydrolase complexed with N-cycloheptyl-1-(mesitylsulfonyl)piperidine-4-carboxamide., 4J03: Crystal structure of human soluble human epoxide hydrolase complexed with fulvestrant., 4JNC: Soluble Epoxide Hydrolase complexed with a carboxamide inhibitor, 4OCZ: Crystal structure of human soluble epoxide hydrolase complexed with 1-(1-isobutyrylpiperidin-4-yl)-3-(4-(trifluoromethyl)phenyl)urea 1, 4OD0: Crystal structure of human soluble epoxide hydrolase complexed with 1-(1-isobutyrylpiperidin-4-yl)-3-(4-(trifluoromethyl)phenyl)urea 2, 4X6X: Human soluble epoxide hydrolase in complex with a three substituted cyclopropane derivative, 4X6Y: Human soluble epoxide hydrolase in complex with a cyclopropyl urea derivative, 4Y2J: Structure of soluble epoxide hydrolase in complex with N-[(1-methyl-1H-pyrazol-3-yl)methyl]-2-phenylethanamine, 4Y2P: Structure of soluble epoxide hydrolase in complex with N-methyl-1-[3-(pyridin-3-yl)phenyl]methanamine, 4Y2Q: Structure of soluble epoxide hydrolase in complex with 1-[3-(trifluoromethyl)pyridin-2-yl]piperazine, 4Y2R: Structure of soluble epoxide hydrolase in complex with 2-(piperazin-1-yl)nicotinonitrile, 4Y2S: Structure of soluble epoxide hydrolase in complex with 1-[3-(trifluoromethyl)phenyl]-1H-pyrazol-4-ol, 4Y2T: Structure of soluble epoxide hydrolase in complex with 3-[4-(benzyloxy)phenyl]propan-1-ol, 4Y2U: Structure of soluble epoxide hydrolase in complex with tert-butyl 1,2,3,4-tetrahydroquinolin-3-ylcarbamate, 4Y2V: Structure of soluble epoxide hydrolase in complex with (4-bromo-3-cyclopropyl-1H-pyrazol-1-yl)acetic acid, 4Y2X: Structure of soluble epoxide hydrolase in complex with 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol, 4Y2Y: Structure of soluble epoxide hydrolase in complex with 2-(2-fluorophenyl)-N-[(5-methyl-2-thienyl)methyl]ethanamine, 5AHX: ligand complex structure of soluble epoxide hydrolase, 5AI0: ligand complex structure of soluble epoxide hydrolase, 5AI4: ligand complex structure of soluble epoxide hydrolase, 5AI5: ligand complex structure of soluble epoxide hydrolase, 5AI6: ligand complex structure of soluble epoxide hydrolase, 5AI8: ligand complex structure of soluble epoxide hydrolase, 5AI9: ligand complex structure of soluble epoxide hydrolase, 5AIA: ligand complex structure of soluble epoxide hydrolase, 5AIB: ligand complex structure of soluble epoxide hydrolase, 5AIC: ligand complex structure of soluble epoxide hydrolase, 5AK3: ligand complex structure of soluble epoxide hydrolase, 5AK4: ligand complex structure of soluble epoxide hydrolase, 5AK5: ligand complex structure of soluble epoxide hydrolase, 5AK6: ligand complex structure of soluble epoxide hydrolase, 5AKE: ligand complex structure of soluble epoxide hydrolase, 5AKG: ligand complex structure of soluble epoxide hydrolase, 5AKH: ligand complex structure of soluble epoxide hydrolase, 5AKI: ligand complex structure of soluble epoxide hydrolase, 5AKJ: ligand complex structure of soluble epoxide hydrolase, 5AKK: ligand complex structure of soluble epoxide hydrolase, 5AKL: ligand complex structure of soluble epoxide hydrolase, 5AKX: ligand complex structure of soluble epoxide hydrolase, 5AKY: ligand complex structure of soluble epoxide hydrolase, 5AKZ: ligand complex structure of soluble epoxide hydrolase, 5ALD: ligand complex structure of soluble epoxide hydrolase, 5ALE: ligand complex structure of soluble epoxide hydrolase, 5ALF: ligand complex structure of soluble epoxide hydrolase, 5ALG: ligand complex structure of soluble epoxide hydrolase, 5ALH: ligand complex structure of soluble epoxide hydrolase, 5ALI: ligand complex structure of soluble epoxide hydrolase, 5ALJ: ligand complex structure of soluble epoxide hydrolase, 5ALK: ligand complex structure of soluble epoxide hydrolase, 5ALL: ligand complex structure of soluble epoxide hydrolase, 5ALM: ligand complex structure of soluble epoxide hydrolase, 5ALN: ligand complex structure of soluble epoxide hydrolase, 5ALO: ligand complex structure of soluble epoxide hydrolase, 5ALP: ligand complex structure of soluble epoxide hydrolase, 5ALQ: ligand complex structure of soluble epoxide hydrolase, 5ALR: ligand complex structure of soluble epoxide hydrolase, 5ALS: ligand complex structure of soluble epoxide hydrolase, 5ALT: ligand complex structure of soluble epoxide hydrolase, 5ALU: ligand complex structure of soluble epoxide hydrolase, 5ALV: ligand complex structure of soluble epoxide hydrolase, 5ALW: ligand complex structure of soluble epoxide hydrolase, 5ALX: ligand complex structure of soluble epoxide hydrolase, 5ALY: ligand complex structure of soluble epoxide hydrolase, 5ALZ: ligand complex structure of soluble epoxide hydrolase, 5AM0: ligand complex structure of soluble epoxide hydrolase, 5AM1: ligand complex structure of soluble epoxide hydrolase, 5AM2: ligand complex structure of soluble epoxide hydrolase, 5AM3: ligand complex structure of soluble epoxide hydrolase, 5AM4: ligand complex structure of soluble epoxide hydrolase, 5AM5: ligand complex structure of soluble epoxide hydrolase, 5FP0: ligand complex structure of soluble epoxide hydrolase, 6AUM: Crystal structure of human soluble epoxide hydrolase complexed with trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid, 6FR2: Soluble epoxide hydrolase in complex with LK864 polar spirocyclic orally bioavailable urea inhibitor, 6HGV: Soluble epoxide hydrolase in complex with talinolol, 6HGW: Soluble epoxide hydrolase in complex with 2-(4-fluorophenyl)-N-(4-phenoxybenzyl)ethanamine, 6HGX: Soluble epoxide hydrolase in complex with 1-(4-((4-(tert-butyl)morpholin-2-yl)methoxy)phenyl)-3-cyclohexylurea, 6I5E: X-ray structure of apo human soluble Epoxide Hydrolase C-terminal Domain (hsEH CTD), 6I5G: X-ray structure of human soluble Epoxide Hydrolase C-terminal Domain (hsEH CTD)in complex with 15d-PGJ2, 6YL4: Soluble epoxide hydrolase in complex with 3-((R)-3-(1-hydroxyureido)but-1-yn-1-yl)-N-((S)-3-phenyl-3-(4-trifluoromethoxy)phenyl)propyl)benzamide, 7A7G: Soluble epoxide hydrolase in complex with TK90, 7EBA: Soluble epoxide hydrolase in complex with kurarinone, 7P4K: Soluble epoxide hydrolase in complex with FL217 No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA HGYVTVKPRVRLHFVELGSGPAVCLCHGFPESWYSWRYQIPALAQAGYRV LAMDMKGYGESSAPPEIEEYCMEVLCKEMVTFLDKLGLSQAVFIGHDWGG MLVWYMALFYPERVRAVASLNTPFIPANPNMSPLESIKANPVFDYQLYFQ EPGVAEAELEQNLSRTFKSLFRASDESVLSMHKVCEAGGLFVNSPEEPSL SRMVTEEEIQFYVQQFKKSGFRGPLNWYRNMERNWKWACKSLGRKILIPA LMVTAEKDFVLVPQMSQHMEDWIPHLKRGHIEDCGHWTQMDKPTEVNQIL IKWLDSDARNPPVVSKM
INTRODUCTION: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES: This study aimed to assess in vivo the physiological role of sEH-P. METHODS: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS: The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARgamma, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION: Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.
Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by loss of dopaminergic neurons in the substantia nigra (SN), causing bradykinesia and rest tremors. Although the molecular mechanism of PD is still not fully understood, neuroinflammation has a key role in the damage of dopaminergic neurons. Herein, we found that kurarinone, a unique natural product from Sophora flavescens, alleviated the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic neurotoxicity, including the losses of neurotransmitters and tyrosine hydroxylase (TH)-positive cells (SN and striatum [STR]). Furthermore, kurarinone attenuated the MPTP-mediated neuroinflammation via suppressing the activation of microglia involved in the nuclear factor kappa B signaling pathway. The proteomics result of the solvent-induced protein precipitation and thermal proteome profiling suggest that the soluble epoxide hydrolase (sEH) enzyme, which is associated with the neuroinflammation of PD, is a promising target of kurarinone. This is supported by the increase of plasma epoxyeicosatrienoic acids (sEH substrates) and the decrease of dihydroxyeicosatrienoic acids (sEH products), and the results of in vitro inhibition kinetics, surface plasmon resonance, and cocrystallization of kurarinone with sEH revealed that this natural compound is an uncompetitive inhibitor. In addition, sEH knockout (KO) attenuated the progression of PD, and sEH KO plus kurarinone did not further reduce the protection of PD in MPTP-induced PD mice. These findings suggest that kurarinone could be a potential natural candidate for the treatment of PD, possibly through sEH inhibition.
Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor gamma (PPARgamma) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARgamma agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARgamma leads to fluid retention associated with edema and weight gain, while partial PPARgamma agonists do not have these drawbacks. In this study, we designed a dual partial PPARgamma agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.
INTRODUCTION: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES: This study aimed to assess in vivo the physiological role of sEH-P. METHODS: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS: The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARgamma, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION: Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.
Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by loss of dopaminergic neurons in the substantia nigra (SN), causing bradykinesia and rest tremors. Although the molecular mechanism of PD is still not fully understood, neuroinflammation has a key role in the damage of dopaminergic neurons. Herein, we found that kurarinone, a unique natural product from Sophora flavescens, alleviated the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic neurotoxicity, including the losses of neurotransmitters and tyrosine hydroxylase (TH)-positive cells (SN and striatum [STR]). Furthermore, kurarinone attenuated the MPTP-mediated neuroinflammation via suppressing the activation of microglia involved in the nuclear factor kappa B signaling pathway. The proteomics result of the solvent-induced protein precipitation and thermal proteome profiling suggest that the soluble epoxide hydrolase (sEH) enzyme, which is associated with the neuroinflammation of PD, is a promising target of kurarinone. This is supported by the increase of plasma epoxyeicosatrienoic acids (sEH substrates) and the decrease of dihydroxyeicosatrienoic acids (sEH products), and the results of in vitro inhibition kinetics, surface plasmon resonance, and cocrystallization of kurarinone with sEH revealed that this natural compound is an uncompetitive inhibitor. In addition, sEH knockout (KO) attenuated the progression of PD, and sEH KO plus kurarinone did not further reduce the protection of PD in MPTP-induced PD mice. These findings suggest that kurarinone could be a potential natural candidate for the treatment of PD, possibly through sEH inhibition.
        
Title: Computational insights into the known inhibitors of human soluble epoxide hydrolase Bzowka M, Mitusinska K, Hopko K, Gora A Ref: Drug Discov Today, :, 2021 : PubMed
Human soluble epoxide hydrolase (hsEH) is involved in the hydrolysis of epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory properties. Given that EET conversion generates nonbioactive molecules, inhibition of this enzyme would be beneficial. Past decades of work on hsEH inhibitors resulted in numerous potential compounds, of which a hundred hsEH-ligand complexes were crystallized and deposited in the Protein Data Bank (PDB). We analyzed all deposited hsEH-ligand complexes to gain insight into the binding of inhibitors and to provide feedback on the future drug design processes. We also reviewed computationally driven strategies that were used to propose novel hsEH inhibitors.
Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor gamma (PPARgamma) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARgamma agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARgamma leads to fluid retention associated with edema and weight gain, while partial PPARgamma agonists do not have these drawbacks. In this study, we designed a dual partial PPARgamma agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.
Inhibition of multiple enzymes of the arachidonic acid cascade leads to synergistic anti-inflammatory effects. Merging of 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH) pharmacophores led to the discovery of a dual 5-LOX/sEH inhibitor, which was subsequently optimized in terms of potency toward both targets and metabolic stability. The optimized lead structure displayed cellular activity in human polymorphonuclear leukocytes, oral bioavailability, and target engagement in vivo and demonstrated profound anti-inflammatory and anti-fibrotic efficiency in a kidney injury model caused by unilateral ureteral obstruction in mice. These results pave the way for investigating the therapeutic potential of dual 5-LOX/sEH inhibitors in other inflammation- and fibrosis-related disease models.
Multitarget anti-inflammatory drugs interfering with the arachidonic acid cascade exhibit superior efficacy. In this study, a prototype dual inhibitor of soluble epoxide hydrolase (sEH) and LTA4 hydrolase (LTA4H) with submicromolar activity toward both targets has been designed and synthesized. Preliminary structure-activity relationship studies were performed to identify optimal substitution patterns. X-ray structure analysis of a promising dual inhibitor in complex with sEH, as well as molecular docking with LTA4H provided a rationale for further optimization. Hereby, scaffold extension was successfully applied to yield potent dual sEH/LTA4H inhibitors. The spectrum of pro- and anti-inflammatory lipid mediators was evaluated in M1 and M2 macrophages, stimulated with LPS, and incubated with the most promising compound 14. The effect of 14 on the inflammatory lipid mediator profile characterizes dual sEH/LTA4H inhibitors as an interesting option for future anti-inflammatory agent investigations.
Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.
Human soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Delta(12,14)-Prostaglandin J2 (15d-PGJ2). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ2 in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors.
Selective optimization of side activities is a valuable source of novel lead structures in drug discovery. In this study, a computer-aided approach was used to deorphanize the pleiotropic cholesterol-lowering effects of the beta-blocker talinolol, which result from the inhibition of the enzyme soluble epoxide hydrolase (sEH). X-ray structure analysis of the sEH in complex with talinolol enables a straightforward optimization of inhibitory potency. The resulting lead structure exhibited in vivo activity in a rat model of diabetic neuropatic pain.
Multi-target inhibitors have become increasing popular as a means to leverage the advantages of poly-pharmacology while simplifying drug delivery. Here, we describe dual inhibitors for soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH), two targets known to synergize when treating inflammatory and neuropathic pain. The structure activity relationship (SAR) study described herein initially started with t-TUCB (trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid), a potent sEH inhibitor that was previously shown to weakly inhibit FAAH. Inhibitors with a 6-fold increase of FAAH potency while maintaining high sEH potency were developed by optimization. Interestingly, compared to most FAAH inhibitors that inhibit through time-dependent covalent modification, t-TUCB and related compounds appear to inhibit FAAH through a time-independent, competitive mechanism. These inhibitors are selective for FAAH over other serine hydrolases. In addition, FAAH inhibition by t-TUCB appears to be higher in human FAAH over other species; however, the new dual sEH/FAAH inhibitors have improved cross-species potency. These dual inhibitors may be useful for future studies in understanding the therapeutic application of dual sEH/FAAH inhibition.
Spirocyclic 1-oxa-9-azaspiro[5.5]undecan-4-amine scaffold was explored as a basis for the design of potential inhibitors of soluble epoxide hydrolase (sEH). Synthesis and testing of the initial SAR-probing library followed by biochemical testing against sEH allowed nominating a racemic lead compound (+/-)-22. The latter showed remarkable (> 0.5mM) solubility in aqueous phosphate buffer solution, unusually low (for sEH inhibitors) lipophilicity as confirmed by experimentally determined logD7.4 of 0.99, and an excellent oral bioavailability in mice (as well as other pharmacokinetic characteristics). Individual enantiomer profiling revealed that the inhibitory potency primarily resided with the dextrorotatory eutomer (+)-22 (IC50 4.99+/-0.18nM). For the latter, a crystal structure of its complex with a C-terminal domain of sEH was obtained and resolved. These data fully validate (+)-22 as a new non-racemic advanced lead compound for further development as a potential therapeutic agent for use in such areas as cardiovascular disease, inflammation and pain.
OBJECTIVES: Familial hypercholesterolemia (FH) is an autosomal dominant disorder of cholesterol metabolism. Three recognized genes (LDLR, APOB and PCSK9) present in only 20-30% of patients with possible FH cases. Additional FH-causing genes need to be explored. The present study found an isolated gene change, sEH R287Q, in a core family of FH. In this study, we aimed to investigate the roles of R287Q on sEH expression and on LDLR expression, LDL binding to LDLR and LDL internalization. MATERIALS AND METHODS: 167 lipid-related genes of a core FH family were sequenced using a gene-capture chip. Through carrier dependent protein expression, the expression level (western blot), hydrolase activity (fluorescent chemistry) and intracellular localization (immunofluorescence and Confocal Laser Scanning Microscope) of recombinant sEH R287Q in cultured BEL-7402 cells were conducted. The effect of wild type and R287Q of sEH on LDLR expression, LDL binding to LDLR and LDL internalization were also conducted through Flow Cytometry. RESULTS: sEH R287Q was the only gene changes among 167 lipid-related genes in the FH core family. Both expression level and hydrolase activity of recombinant sEH R287Q in cultured cells were significantly declined compared with that of the wild type sEH. sEH R287Q also decreased the binding of LDL to LDLR and LDL internalization and had no effect on cell-surface LDLR protein level. CONCLUSION: Our results suggest that sEH R287Q may have a role in the elevation of blood LDL in FH. The exactly role of sEH R287Q on FH deserves further study.
Eicosanoids play a crucial role in inflammatory pain. However, there is very little knowledge about the contribution of oxidized linoleic acid metabolites in inflammatory pain and peripheral sensitization. Here, we identify 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME), a cytochrome P450-derived linoleic acid metabolite, as crucial mediator of thermal hyperalgesia during inflammatory pain. We found 12,13-DiHOME in increased concentrations in peripheral nervous tissue during acute zymosan- and complete Freund's Adjuvant-induced inflammatory pain. 12,13-DiHOME causes calcium transients in sensory neurons and sensitizes the transient receptor potential vanilloid 1 (TRPV1)-mediated intracellular calcium increases via protein kinase C, subsequently leading to enhanced TRPV1-dependent CGRP-release from sensory neurons. Peripheral injection of 12,13-DiHOME in vivo causes TRPV1-dependent thermal pain hypersensitivity. Finally, application of the soluble epoxide hydrolase (sEH)-inhibitor TPPU reduces 12,13-DiHOME concentrations in nervous tissue and reduces zymosan- and CFA-induced thermal hyperalgesia in vivo. In conclusion, we identify a novel role for the lipid mediator 12,13-DiHOME in mediating thermal hyperalgesia during inflammatory pain and propose a novel mechanism that may explain the antihyperalgesic effects of sEH inhibitors in vivo.
        
Title: Deletion of soluble epoxide hydrolase enhances coronary reactive hyperemia in isolated mouse heart: role of oxylipins and PPARgamma Hanif A, Edin ML, Zeldin DC, Morisseau C, Nayeem MA Ref: American Journal of Physiology Regul Integr Comp Physiol, 311:R676, 2016 : PubMed
The relationship between soluble epoxide hydrolase (sEH) and coronary reactive hyperemia (CRH) response to a brief ischemic insult is not known. Epoxyeicosatrienoic acids (EETs) exert cardioprotective effects in ischemia/reperfusion injury. sEH converts EETs into dihydroxyeicosatrienoic-acids (DHETs). Therefore, we hypothesized that knocking out sEH enhances CRH through modulation of oxylipin profiles, including an increase in EET/DHET ratio. Compared with sEH+/+, sEH-/- mice showed enhanced CRH, including greater repayment volume (RV; 28% higher, P < 0.001) and repayment/debt ratio (32% higher, P < 0.001). Oxylipins from the heart perfusates were analyzed by LC-MS/MS. The 14,15-EET/14,15-DHET ratio was 3.7-fold higher at baseline (P < 0.001) and 5.6-fold higher post-ischemia (P < 0.001) in sEH-/- compared with sEH+/+ mice. Likewise, the baseline 9,10- and 12,13-EpOME/DiHOME ratios were 3.2-fold (P < 0.01) and 3.7-fold (P < 0.001) higher, respectively in sEH-/- compared with sEH+/+ mice. 13-HODE was also significantly increased at baseline by 71% (P < 0.01) in sEH-/- vs. sEH+/+ mice. Levels of 5-, 11-, 12-, and 15-hydroxyeicosatetraenoic acids were not significantly different between the two strains (P > 0.05), but were decreased postischemia in both groups (P = 0.02, P = 0.04, P = 0.05, P = 0.03, respectively). Modulation of CRH by peroxisome proliferator-activated receptor gamma (PPARgamma) was demonstrated using a PPARgamma-antagonist (T0070907), which reduced repayment volume by 25% in sEH+/+ (P < 0.001) and 33% in sEH-/- mice (P < 0.01), and a PPARgamma-agonist (rosiglitazone), which increased repayment volume by 37% in both sEH+/+ (P = 0.04) and sEH-/- mice (P = 0.04). l-NAME attenuated CRH in both sEH-/- and sEH+/+ These data demonstrate that genetic deletion of sEH resulted in an altered oxylipin profile, which may have led to an enhanced CRH response.
Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment.
Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high-throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose-response analysis to confirm the hits, the identified actives were then effectively triaged by a structure-based hit-classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right-hand side of the active-site pocket with hydrogen bonds to the protein. The 2-phenylbenzimidazole-4-sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2-phenylbenzimidazole-4-sulfonamide series.
        
Title: Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening Amano Y, Tanabe E, Yamaguchi T Ref: Bioorganic & Medicinal Chemistry, :, 2015 : PubMed
Soluble epoxide hydrolase (sEH) is a potential target for the treatment of inflammation and hypertension. X-ray crystallographic fragment screening was used to identify fragment hits and their binding modes. Eight fragment hits were identified via soaking of sEH crystals with fragment cocktails, and the co-crystal structures of these hits were determined via individual soaking. Based on the binding mode, N-ethylmethylamine was identified as a promising scaffold that forms hydrogen bonds with the catalytic residues of sEH, Asp335, Tyr383, and Tyr466. Compounds containing this scaffold were selected from an in-house chemical library and assayed. Although the starting fragment had a weak inhibitory activity (IC50: 800muM), we identified potent inhibitors including 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol exhibiting the highest inhibitory activity (IC50: 0.51muM). This corresponded to a more than 1500-fold increase in inhibitory activity compared to the starting fragment. Co-crystal structures of the hit compounds demonstrate that the binding of N-ethylmethylamine to catalytic residues is similar to that of the starting fragment. We therefore consider crystallographic fragment screening to be appropriate for the identification of weak but promising fragment hits.
        
Title: Successful generation of structural information for fragment-based drug discovery Oster L, Tapani S, Xue Y, Kack H Ref: Drug Discov Today, 20:1104, 2015 : PubMed
Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation.
Structure-based drug design (SBDD) is a powerful and widely used approach to optimize affinity of drug candidates. With the recently introduced INPHARMA method, the binding mode of small molecules to their protein target can be characterized even if no spectroscopic information about the protein is known. Here, we show that the combination of the spin-diffusion-based NMR methods INPHARMA, trNOE, and STD results in an accurate scoring function for docking modes and therefore determination of protein-ligand complex structures. Applications are shown on the model system protein kinase A and the drug targets glycogen phosphorylase and soluble epoxide hydrolase (sEH). Multiplexing of several ligands improves the reliability of the scoring function further. The new score allows in the case of sEH detecting two binding modes of the ligand in its binding site, which was corroborated by X-ray analysis.
We have previously reported a series of cyclopropyl urea derivatives as potent orally available soluble epoxide hydrolase (sEH) inhibitors. Here, we designed and synthesized three substituted cyclopropane derivatives that occupy all available pockets of sEH catalytic domain. Compound 14 with a diphenyl substituted cyclopropyl moiety showed good sEH inhibitory activity. Co-crystal structure of this compound and human sEH hydrolase catalytic domain revealed enzyme pockets occupied by the phenoxypiperidine part and the diphenyl cyclopropyl moiety. Furthermore, investigation of the phenoxypiperidine part of compound 14 resulted in the discovery of compound 19, which showed potent sEH inhibitory activity (sub-nM sEH IC50 values).
        
Title: Structural insights into binding of inhibitors to soluble epoxide hydrolase gained by fragment screening and X-ray crystallography Amano Y, Yamaguchi T, Tanabe E Ref: Bioorganic & Medicinal Chemistry, 22:2427, 2014 : PubMed
Soluble epoxide hydrolase (sEH) is a component of the arachidonic acid cascade and is a candidate target for therapies for hypertension or inflammation. Although many sEH inhibitors are available, their scaffolds are not structurally diverse, and knowledge of their specific interactions with sEH is limited. To obtain detailed structural information about protein-ligand interactions, we conducted fragment screening of sEH, analyzed the fragments using high-throughput X-ray crystallography, and determined 126 fragment-bound structures at high resolution. Aminothiazole and benzimidazole derivatives were identified as novel scaffolds that bind to the catalytic triad of sEH with good ligand efficiency. We further identified fragment hits that bound to subpockets of sEH called the short and long branches. The water molecule conserved in the structure plays an important role in binding to the long branch, whereas Asp496 and the main chain of Phe497 form hydrogen bonds with fragment hits in the short branch. Fragment hits and their crystal structures provide structural insights into ligand binding to sEH that will facilitate the discovery of novel and potent inhibitors of sEH.
Diabetes is affecting the life of millions of people. A large proportion of diabetic patients suffer from severe complications such as neuropathic pain, and current treatments for these complications have deleterious side effects. Thus, alternate therapeutic strategies are needed. Recently, the elevation of epoxy-fatty acids through inhibition of soluble epoxide hydrolase (sEH) was shown to reduce diabetic neuropathic pain in rodents. In this report, we describe a series of newly synthesized sEH inhibitors with at least 5-fold higher potency and doubled residence time inside both the human and rodent sEH enzyme than previously reported inhibitors. These inhibitors also have better physical properties and optimized pharmacokinetic profiles. The optimized inhibitor selected from this new series displayed improved efficacy of almost 10-fold in relieving pain perception in diabetic neuropathic rats as compared to the approved drug, gabapentin, and previously published sEH inhibitors. Therefore, these new sEH inhibitors could be an attractive alternative to treat diabetic neuropathy in humans.
Epoxyeicosatrienoic acids (EETs) protect against the development of insulin resistance in rodents. EETs are hydrolyzed to less biologically active diols by soluble epoxide hydrolase (encoded for by EPHX2). Functional variants of EPHX2 encode for enzymes with increased (Lys55Arg) or decreased (Arg287Gln) hydrolase activity. This study tested the hypothesis that variants of EPHX2 are associated with insulin sensitivity or secretion in humans. Subjects participating in metabolic phenotyping studies were genotyped. Eighty-five subjects underwent hyperglycemic clamps. There was no relationship between the Lys55Arg genotype and insulin sensitivity or secretion. In contrast, the EPHX2 287Gln variant was associated with higher insulin sensitivity index (p=0.019 controlling for body mass index and metabolic syndrome). Also, there was an interactive effect of EPHX2 Arg287Gln genotype and body mass index on insulin sensitivity index (p=0.029). There was no relationship between EPHX2 Arg287Gln genotype and acute or late-phase glucose-stimulated insulin secretion, but disposition index was higher in 287Gln carriers compared with Arg/Arg (p=0.022). Plasma EETs correlated with insulin sensitivity index (r=0.64, p=0.015 for total EETs) and were decreased in the metabolic syndrome. A genetic variant that results in decreased soluble epoxide hydrolase activity is associated with increased insulin sensitivity, as are higher EETs.
The soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of epoxy-fatty acids, signaling molecules involved in numerous biologies. Toward finding novel inhibitors of sEH, a library of known drugs was tested for inhibition of sEH. We found that fulvestrant, an anticancer agent, is a potent (KI=26 nM) competitive inhibitor of sEH. From this observation, we found that alkyl-sulfoxides represent a new kind of pharmacophore for the inhibition of sEH.
Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity.
A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure-activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.
1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure. Based on this lead optimization work, 1-[4-methyl-6-(methylamino)-1,3,5-triazin-2-yl]-N-{[[4-bromo-2-(trifluoromethoxy) ]-phenyl]methyl}-4-piperidinecarboxamide (27) was identified as a useful tool compound for in vivo investigation. Robust effects on a serum biomarker, 9, 10-epoxyoctadec-12(Z)-enoic acid (the epoxide derived from linoleic acid) were observed, which provided evidence of robust in vivo target engagement and the suitability of 27 as a tool compound for study in various disease models.
Ligand efficiency is frequently used to evaluate fragment compounds in fragment-based drug discovery. We applied ligand efficiency indices in a conventional virtual screening-initiated lead generation study of soluble epoxide hydrolase inhibitors. From a considerable number of screening hits, we carefully selected a compound exhibiting relatively weak inhibitory activity but high ligand efficiency. This ligand efficiency-guided selection could reveal compounds possessing preferable lead-like characteristics in terms of molecular size and lipophilicity. The following hit-to-lead medicinal chemistry campaign successfully led to a more potent, ADMET-clean, lead-like compound preserving high ligand efficiency. Retrospective analyses, including consideration of the more recently proposed indices of ligand efficiency, shed light on the validity of our hit triage and hit-to-lead studies. The present work proposes a practical methodology for lead generation using the concept of ligand efficiency.
Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.
A novel series of pyrazole sEH inhibitors is reported. Lead optimization efforts to replace the aniline core are also described. In particular, 2-pyridine, 3-pyridine and pyridazine analogs are potent sEH inhibitors with favorable CYP3A4 inhibitory and microsomal stability profiles.
Inhibition of soluble epoxide hydrolase (sEH) is hypothesized to lead to an increase in circulating levels of epoxyeicosatrienoic acids, resulting in the potentiation of their in vivo pharmacological properties. As part of an effort to identify inhibitors of sEH with high and sustained plasma exposure, we recently performed a high throughput screen of our compound collection. The screen identified N-(3,3-diphenyl-propyl)-nicotinamide as a potent inhibitor of sEH. Further profiling of this lead revealed short metabolic half-lives in microsomes and rapid clearance in the rat. Consistent with these observations, the determination of the in vitro metabolic profile of N-(3,3-diphenyl-propyl)-nicotinamide in rat liver microsomes revealed extensive oxidative metabolism and a propensity for metabolite switching. Lead optimization, guided by the analysis of the solid-state costructure of N-(3,3-diphenyl-propyl)-nicotinamide bound to human sEH, led to the identification of a class of potent and selective inhibitors. An inhibitor from this class displayed an attractive in vitro metabolic profile and high and sustained plasma exposure in the rat after oral administration.
        
Title: Soluble epoxide hydrolase: a new target for cardioprotection Gross GJ, Nithipatikom K Ref: Curr Opin Investig Drugs, 10:253, 2009 : PubMed
Arachidonic acid is metabolized to a number of bioactive eicosanoid molecules by several enzymes, including enzymes of the COX, lipoxygenase and cytochrome P450 (CYP) monooxygenase pathways. Inhibition of the CYP omega-hydroxylase pathway, stimulation of the CYP-epoxygenase pathway and administration of exogenous epoxyeicosatrienoic acids resulted in cardioprotection in animal models of ischemia; contractile function was improved in mouse hearts subjected to global ischemia/reperfusion, and infarct size was reduced in canine and rat hearts. Cardioprotective effects were also achieved when metabolism of the endogenous epoxyeicosatrienoic acids (EETs) by their major enzymatic hydrolysis pathway was blocked in gene knockout mice (EPHX2-/-) or by inhibitors of soluble epoxide hydrolase (sEH), such as 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). Pretreatment of canine hearts with AUDA dose-dependently reduced infarct size, and AUDA enhanced the infarct-sparing effect of treatment with exogenous EETs. The preliminary results of studies in rodent hearts have also demonstrated that AUDA and AUDA-butyl ester reduce infarct size. These results and others obtained in models of myocardial stunning and hypertrophy suggest that inhibitors of EPHX2 or sEH have therapeutic potential in a broad range of cardiovascular diseases.
Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.
The soluble epoxide hydrolase (sEH) plays an important role in the metabolism of endogenous chemical mediators involved in blood pressure regulation and vascular inflammation. 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid (AUDA, 1) is a very active inhibitor of sEH both in vitro and in vivo. However, its relatively high melting point and limited solubility in either water or oil-based solvents leads to difficulties in formulating the compound and often results in poor in vivo availability. We investigated the effect of derivatization of the acid functional group of inhibitor 1 on the inhibition potencies, physical properties, and pharmacokinetic properties. For human sEH, similar inhibition potency was obtained when the acid of compound 1 was modified to esters (2-15). The resulting compounds exhibited improved physical properties (23-66 degrees C lower melting point and 5-fold better solubility in oil). Pharmacokinetic studies showed that the esters possess improved oral bioavailability in mice. On the other hand, amide derivatives of AUDA 1 did not show significant improvement in inhibition potencies or physical properties (higher melting points and lower solubility). The esterification of 1 results in compounds that are easier to formulate in animal food and in triglycerides for gavage and other routes of administration, making it easier to study the biological effects of sEH inhibition in vivo.
Single nucleotide polymorphisms (SNPs) in the human EPHX2 gene have recently been implicated in susceptibility to cardiovascular disease, including stroke. EPHX2 encodes for soluble epoxide hydrolase (sEH), an important enzyme in the metabolic breakdown of arachidonic acid-derived eicosanoids referred to as epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs are protective against ischemic cell death in culture. Therefore, we tested the hypothesis that polymorphisms in the human EPHX2 gene alter sEH enzyme activity and affect neuronal survival after ischemic injury in vitro. Human EPHX2 mutants were recreated by site-directed mutagenesis and fused downstream of TAT protein transduction domain. Western blot analysis and immunocytochemistry staining revealed high-transduction efficiency of human TAT-sEH variants in rat primary cultured cortical neurons, associated with increased metabolism of 14,15-EET to corresponding 14,15-dihydroxyeicosatrienoic acid. A human variant of sEH with Arg103Cys amino acid substitution, previously demonstrated to increase sEH enzymatic activity, was associated with increased cell death induced in cortical neurons by oxygen-glucose deprivation (OGD) and reoxygenation. In contrast, the Arg287Gln mutation was associated with reduced sEH activity and protection from OGD-induced neuronal cell death. We conclude that sequence variations in the human EPHX2 gene alter susceptibility to ischemic injury and neuronal survival in a manner linked to changes in the hydrolase activity of the enzyme. The findings suggest that human EPHX2 mutations may in part explain the genetic variability in sensitivity to ischemic brain injury and stroke outcome.
The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are produced in brain and perform important biological functions, including protection from ischemic injury. The beneficial effect of EETs, however, is limited by their metabolism via soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH inhibition is protective against ischemic brain damage in vivo by a mechanism linked to enhanced cerebral blood flow (CBF). We determined expression and distribution of sEH immunoreactivity (IR) in brain, and examined the effect of sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE) on CBF and infarct size after experimental stroke in mice. Mice were administered a single intraperitoneal injection of AUDA-BE (10 mg/kg) or vehicle at 30 mins before 2-h middle cerebral artery occlusion (MCAO) or at reperfusion, in the presence and absence of P450 epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH). Immunoreactivity for sEH was detected in vascular and non-vascular brain compartments, with predominant expression in neuronal cell bodies and processes. 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid butyl ester was detected in plasma and brain for up to 24 h after intraperitoneal injection, which was associated with inhibition of sEH activity in brain tissue. Finally, AUDA-BE significantly reduced infarct size at 24 h after MCAO, which was prevented by MS-PPOH. However, regional CBF rates measured by iodoantipyrine (IAP) autoradiography at end ischemia revealed no differences between AUDA-BE- and vehicle-treated mice. The findings suggest that sEH inhibition is protective against ischemic injury by non-vascular mechanisms, and that sEH may serve as a therapeutic target in stroke.
        
Title: Human soluble epoxide hydrolase: structural basis of inhibition by 4-(3-cyclohexylureido)-carboxylic acids Gomez GA, Morisseau C, Hammock BD, Christianson DW Ref: Protein Science, 15:58, 2006 : PubMed
X-ray crystal structures of human soluble epoxide hydrolase (sEH) complexed with four different dialkylurea inhibitors bearing pendant carboxylate "tails" of varying length have been determined at 2.3-3.0 A resolution. Similarities among inhibitor binding modes reinforce the proposed roles of Y381 and/or Y465 as general acids that protonate the epoxide ring of the substrate in concert with nucleophilic attack of D333 at the electrophilic epoxide carbon. Additionally, the binding of these inhibitors allows us to model the binding mode of the endogenous substrate 14,15-epoxyeicosatrienoic acid. Contrasts among inhibitor binding modes include opposite orientations of inhibitor binding in the active-site hydrophobic tunnel. Alternative binding orientations observed for this series of inhibitors to human sEH, as well as the binding of certain dialkylurea inhibitors to human sEH and murine sEH, complicate the structure-based design of human sEH inhibitors with potential pharmaceutical applications in the treatment of hypertension. Thus, with regard to the optimization of inhibitor designs targeting human sEH, it is critical that human sEH and not murine sEH be utilized for inhibitor screening, and it is critical that structures of human sEH-inhibitor complexes be determined to verify inhibitor binding orientations that correlate with measured affinities.
        
Title: Substituted adamantyl-urea inhibitors of the soluble epoxide hydrolase dilate mesenteric resistance vessels Olearczyk JJ, Field MB, Kim IH, Morisseau C, Hammock BD, Imig JD Ref: Journal of Pharmacology & Experimental Therapeutics, 318:1307, 2006 : PubMed
The epoxyeicosatrienoic acids (EETs) have been identified as endothelium-derived hyperpolarizing factors. Metabolism of the EETs to the dihydroxyeicosatrienoic acids is catalyzed by soluble epoxide hydrolase (sEH). Administration of urea-based sEH inhibitors provides protection from hypertension-induced renal injury at least in part by lowering blood pressure. Here, we investigated the hypothesis that a mechanism by which sEH inhibitors elicit their cardiovascular protective effects is via their action on the vasculature. Mesenteric resistance arteries were isolated from Sprague-Dawley rats, pressurized, and constricted with the thromboxane A2 agonist U46619 (9,11-dideoxy-11,9-epoxymethano-prostaglandin F2alpha). Mesenteric arteries were then incubated with increasing concentrations of the sEH inhibitor 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA). AUDA resulted in a concentration-dependent relaxation of mesenteric arteries, with 10 microM resulting in a 48 +/- 7% relaxation. Chain-shortened analogs of AUDA had an attenuated vasodilatory response. Interestingly, at 10 microM, the sEH inhibitors 1-cyclohexyl-3-dodecylurea, 12-(3-cyclohexylureido)dodecanoic acid, and 950 [adamantan-1-yl-3-{5-[2-(2-ethoxyethoxy)ethoxy]pentyl}urea] were significantly less active, resulting in a 25 +/- 8%, 10 +/- 9%, and -8 +/- 3% relaxation, respectively. Treatment of mesenteric arteries with tetraethylammonium, iberiotoxin, ouabain, or glibenclamide did not alter AUDA-induced relaxation. The AUDA-induced relaxation was completely inhibited when constricted with KCl. In separate experiments, denuding mesenteric resistance vessels did not alter AUDA-induced relaxation. Taken together, these data demonstrate that adamantyl-urea inhibitors have unique dilator actions on vascular smooth muscle compared with other sEH inhibitors and that these dilator actions depend on the adamantyl group and carbon chain length.
Combination therapies have long been used to treat inflammation while reducing side effects. The present study was designed to evaluate the therapeutic potential of combination treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) and previously undescribed soluble epoxide hydrolase inhibitors (sEHIs) in lipopolysaccharide (LPS)-challenged mice. NSAIDs inhibit cyclooxygenase (COX) enzymes and thereby decrease production of metabolites that lead to pain and inflammation. The sEHIs, such as 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), stabilize anti-inflammatory epoxy-eicosatrienoic acids, which indirectly reduce the expression of COX-2 protein. Here we demonstrate that the combination therapy of NSAIDs and sEHIs produces significantly beneficial effects that are additive for alleviating pain and enhanced effects in reducing COX-2 protein expression and shifting oxylipin metabolomic profiles. When administered alone, AUDA-BE decreased protein expression of COX-2 to 73 +/- 6% of control mice treated with LPS only without altering COX-1 expression and decreased PGE(2) levels to 52 +/- 8% compared with LPS-treated mice not receiving any therapeutic intervention. When AUDA-BE was used in combination with low doses of indomethacin, celecoxib, or rofecoxib, PGE(2) concentrations dropped to 51 +/- 7, 84 +/- 9, and 91 +/- 8%, respectively, versus LPS control, without disrupting prostacyclin and thromboxane levels. These data suggest that these drug combinations (NSAIDs and sEHIs) produce a valuable beneficial analgesic and anti-inflammatory effect while prospectively decreasing side effects such as cardiovascular toxicity.
As of 2004, >73 million people were prescribed antiinflammatory medication. Despite the extensive number of current products, many people still suffer from their diseases or the pharmacological properties (side effects) of the medications. Therefore, developing therapeutic strategies to treat inflammation remains an important endeavor. Here, we demonstrate that the soluble epoxide hydrolase (sEH) is a key pharmacologic target for treating acute systemic inflammation. Lipopolysaccharide-induced mortality, systemic hypotension, and histologically evaluated tissue injury were substantially diminished by administration of urea-based, small-molecule inhibitors of sEH to C57BL/6 mice. Moreover, sEH inhibitors decreased plasma levels of proinflammatory cytokines and nitric oxide metabolites while promoting the formation of lipoxins, thus supporting inflammatory resolution. These data suggest that sEH inhibitors have therapeutic efficacy in the treatment and management of acute inflammatory diseases.
        
Title: Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) study Fornage M, Boerwinkle E, Doris PA, Jacobs D, Liu K, Wong ND Ref: Circulation, 109:335, 2004 : PubMed
BACKGROUND: Modulation of endogenous epoxide levels by soluble epoxide hydrolase (sEH) in the endothelium represents an important mechanism in the regulation of cardiovascular function. We examined the relationship between a common, functional polymorphism of the human sEH gene and coronary artery calcification (CAC) in young, largely asymptomatic African-American and non-Hispanic white subjects. METHODS AND RESULTS: Multiple logistic regression and Tobit regression models were used to assess the relationship between the sEH Arg287Gln polymorphism and presence and quantity of CAC. Models adjusting for race (except in race-specific analyses), age, sex, smoking, body mass index, systolic blood pressure, LDL cholesterol, and HDL cholesterol were estimated. Allele and genotype frequency distributions were not significantly different between the 2 ethnic groups (P=0.22; P=0.17, respectively). The Arg287Gln polymorphism of the sEH gene was a significant predictor of CAC status in African-American participants, either alone or after adjusting for other risk factors. African-American subjects with at least 1 copy of the Gln287 allele had a 2-fold greater risk of having CAC compared with those not carrying this allele (95% CI, 1.1 to 2.9; P=0.02). There was no relationship between Arg287Gln polymorphism and the probability of having CAC in white participants (OR, 0.8; 95% CI, 0.5 to 1.3; P=0.49). Inferences from multivariable Tobit regression were similar to those obtained in the logistic regression models, indicating that the Arg287Gln polymorphism was a significant independent predictor of both presence and quantity of CAC in African-American but not white subjects. CONCLUSIONS: These data suggest an intriguing and possibly novel role for sEH in the pathogenesis of atherosclerosis, which deserves additional investigation.
        
Title: Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis Gomez GA, Morisseau C, Hammock BD, Christianson DW Ref: Biochemistry, 43:4716, 2004 : PubMed
The X-ray crystal structure of human soluble epoxide hydrolase (sEH) has been determined at 2.6 A resolution, revealing a domain-swapped quaternary structure identical to that observed for the murine enzyme [Argiriadi, M. A., Morisseau, C., Hammock, B. D., and Christianson, D. W. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 10637-10642]. As with the murine enzyme, the epoxide hydrolytic mechanism of the human enzyme proceeds through an alkyl-enzyme intermediate with Asp-333 in the C-terminal domain. The structure of the human sEH complex with N-cyclohexyl-N'-(iodophenyl)urea (CIU) has been determined at 2.35 A resolution. Tyr-381 and Tyr-465 donate hydrogen bonds to the alkylurea carbonyl group of CIU, consistent with the proposed roles of these residues as proton donors in the first step of catalysis. The N-terminal domain of mammalian sEH contains a 15 A deep cleft, but its biological function is unclear. Recent experiments demonstrate that the N-terminal domain of human sEH catalyzes the metal-dependent hydrolysis of phosphate esters [Cronin, A., Mowbray, S., Durk, H., Homburg, S., Fleming, I., Fisslthaler, B., Oesch, F., and Arand, M. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1552-1557; Newman, J. W., Morisseau, C., Harris, T. R., and Hammock, B. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1558-1563]. The binding of Mg(2+)-HPO4(2-) to the N-terminal domain of human sEH in its CIU complex reveals structural features relevant to those of the enzyme-substrate complex in the phosphatase reaction.
As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.
Plasma lipid and lipoprotein in general reflect the complex influences of multiple genetic loci, for instance, even familial hypercholesterolemia (FH), a representative example of monogenic hyperlipidemia, often presents with phenotypic heterogeneity. In the course of investigating familial coronary artery disease in Utah, we studied 160 members of an eight-generation extended family of FH in which 69 members were affected with type IIa hyperlipoproteinemia (HLPIIa; high plasma cholesterol) and ten with type IIb hyperlipoproteinemia (HLPIIb; high plasma cholesterol as well as plasma triglyceride). Soluble epoxide hydrolase ( EPHX2, sEH) plays a role in disposition of epoxides in plasma lipoprotein particles. Intrafamilial correlation analysis of the modifier effect of Glu287Arg substitution in the EPHX2 gene was carried out among 79 LDLR mutation carriers and 81 noncarriers. In the carriers, plasma cholesterol levels were elevated among carriers of the 287Arg allele (mean +/- SD=358 +/- 72 mg/dl) in comparison with 287Glu homozygotes (mean +/- SD=302 +/- 72 mg/dl) (p=0.0087). Similarly, in the LDLR mutation carriers, the plasma triglyceride levels were elevated among carriers of the 287Arg allele (mean +/- SD=260 +/- 100 mg/dl) in comparison with 287Glu homozygotes (mean +/- SD=169 +/- 83 mg/dl) (p=0.020). No such gene-interactive effect was observed among noncarriers of the LDLR mutation. Half of the patients who presented with HLPIIb had inherited a defective LDLR allele as well as an EPHX2-287Arg allele, whereas the majority who presented with HLPIIa had a defective LDLR allele but not an EPHX2-287Arg allele. These results indicate a significant modification of the phenotype of FH with defective LDLR allele by EPHX2-287Arg variation in our studied kindred.
        
Title: The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity Newman JW, Morisseau C, Harris TR, Hammock BD Ref: Proc Natl Acad Sci U S A, 100:1558, 2003 : PubMed
The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain containing the EH catalytic activity has been well studied. In contrast, a function for the N-terminal domain, which has high homology to the haloacid dehalogenase family of phosphatases, has not been definitively reported. In this study we describe the N-terminal domain as a functional phosphatase unaffected by a number of classic phosphatase inhibitors. Assuming a functional association between these catalytic activities, dihydroxy lipid phosphates were rationalized as potential endogenous substrates. A series of phosphorylated hydroxy lipids were therefore synthesized and found to be excellent substrates for the human sEH. The best substrate tested was the monophosphate of dihydroxy stearic acid (threo-910-phosphonoxy-hydroxy-octadecanoic acid) with K(m) = 21 +/- 0.3 microM, V(Max) = 338 +/- 12 nmol x min(-1) x mg(-1), and k(cat) = 0.35 +/- 0.01 s(-1). Therefore dihydroxy lipid phosphates are possible candidates for the endogenous substrates of the sEH N-terminal domain, which would represent a novel branch of fatty acid metabolism with potential signaling functions.
Human soluble epoxide hydrolase (hsEH) metabolizes a variety of epoxides to the corresponding vicinal diols. Arachidonic and linoleic acid epoxides are thought to be endogenous substrates for hsEH. Enzyme activity in humans shows high interindividual variation (e.g., 500-fold in liver) suggesting the existence of regulatory and/or structural gene polymorphisms. We resequenced each of the 19 exons of the hsEH gene (EPHX2) from 72 persons representing black, Asian, and white populations. A variety of polymorphisms was found, six of which result in amino acid substitutions. Amino acid variants were localized on the crystal structure of the mouse sEH, resulting in the prediction that at least two of these (Arg287Gln and Arg103Cys) might significantly affect enzyme function. The six variants of the hsEH cDNA corresponding to each single polymorphism and one corresponding to a double polymorphism were then constructed by site-directed mutagenesis and expressed in insect cells. As predicted, Arg287Gln and the double mutant Arg287Gln/Arg103Cys showed decreased enzyme activity using trans-stilbene oxide, trans-diphenylpropene oxide, and 14,15-epoxyeicosatrienoic acid as substrates. Lys55Arg and Cys154Tyr mutants had elevated activity for all three substrates. Detailed kinetic studies revealed that the double mutant Arg287Gln/Arg103Cys showed significant differences in Km and Vmax. In addition, stability studies showed that the double mutant was less stable than wild-type protein when incubated at 37 degrees C. These results suggest that at least six hsEH variants exist in the human population and that at least four of these may influence hsEH-mediated metabolism of exogenous and endogenous epoxide substrates in vivo.
        
Title: Seventy genetic variations in human microsomal and soluble epoxide hydrolase genes (EPHX1 and EPHX2) in the Japanese population Saito S, Iida A, Sekine A, Eguchi C, Miura Y, Nakamura Y Ref: J Hum Genet, 46:325, 2001 : PubMed
Human microsomal and soluble epoxide hydrolases (mEH and sEH) are enzymes that metabolize xenobiotic molecules. We screened DNA from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in both genes by direct sequencing of the entire genomic regions containing EPHX1 and EPHX2, except for repetitive elements. This approach identified 33 SNPs in the EPHX1 gene; 6 of them were located in the 5' flanking region, 17 in introns, 8 in exons, and 2 in the 3' flanking region. In the EPHX2 gene, we identified 36 SNPs, including 4 in the 5' flanking region, 24 in introns, 5 in exons, and 3 in the 3' flanking region, as well as one insertion/deletion polymorphism in the 5' flanking region. These variants may contribute to a more precise understanding of the nature of correlations between genotypes and disease-susceptibility phenotypes that have been postulated in regard to human microsomal and soluble epoxide hydrolases.
        
Title: Identification of 6 new polymorphisms, g.11177G>A, g.14622C>T (R49C), g.17540T>C, g.17639T>C, g.30929T>C, g.31074G>A (R454Q), in the human microsomal epoxide hydrolase gene (EPHX1) in a French population Belmahdi F, Chevalier D, Lo-Guidice JM, Allorge D, Cauffiez C, Lafitte JJ, Broly F Ref: Hum Mutat, 16:450, 2000 : PubMed
Title: Identification and functional characterization of human soluble epoxide hydrolase genetic polymorphisms Sandberg M, Hassett C, Adman ET, Meijer J, Omiecinski CJ Ref: Journal of Biological Chemistry, 275:28873, 2000 : PubMed
Human soluble epoxide hydrolase (sEH), an enzyme directing the functional disposition of a variety of endogenous and xenobiotic-derived chemical epoxides, was characterized at the genomic level for interindividual variation capable of impacting function. RNA was isolated from 25 human liver samples and used to generate full-length copies of soluble epoxide hydrolase cDNA. The resulting cDNAs were polymerase chain reaction amplified, sequenced, and eight variant loci were identified. The coding region contained five silent single nucleotide polymorphisms (SNPs) and two variant loci resulting in altered protein sequence. An amino acid substitution was identified at residue 287 in exon 8, where the more common arginine was replaced by glutamine. A second variant locus was identified in exon 13 where an arginine residue was inserted following serine 402 resulting in the sequence, arginine 403-404, instead of the more common, arginine 403. This amino acid insertion was confirmed by analyzing genomic DNA from individuals harboring the polymorphic allele. Slot blot hybridization analyses of the liver samples indicated that sEH mRNA steady-state expression varied approximately 10-fold. Transient transfection experiments with CHO and COS-7 cells were used to demonstrate that the two new alleles possess catalytic activity using trans-stilbene oxide as a model substrate. Although the activity of the glutamine 287 variant was similar to the sEH wild type allele, proteins containing the arginine insertion exhibited strikingly lower activity. Allelic forms of human sEH, with markedly different enzymatic profiles, may have important physiological implications with respect to the disposition of epoxides formed from the oxidation of fatty acids, such as arachidonic acid-derived intermediates, as well in the regulation of toxicity due to xenobiotic epoxide exposures.
        
Title: Structural characterization of the human soluble epoxide hydrolase gene (EPHX2) Sandberg M, Meijer J Ref: Biochemical & Biophysical Research Communications, 221:333, 1996 : PubMed
The structural organization of the human gene encoding soluble epoxide hydrolase (EPHX2) was determined. Cosmid clones containing the EPHX2 gene were identified by hybridization of a human genomic library with PCR amplified cDNA to the mouse or human soluble epoxide hydrolase as probes. The gene consists of 19 exons and is approximately 45 kb of which more than 15 kb were sequenced. The coding sequence corresponds to 555 amino acid residues, i.e., one additional residue to those in the reported cDNA sequence. The sized of the introns were defined by sequencing or PCR analysis and they contained various repetitive structure elements as expected.
Epoxide hydrolases have an important function in organisms in that they catalyze the transformation of potentially toxic or carcinogenic epoxides into the corresponding diols. In this study, the chromosomal localization was determined for the human gene encoding soluble epoxide hydrolase. A polymerase chain reaction fragment corresponding to the C-terminal region of the mouse protein was used to isolate a cosmid clone from a human genomic library. By fluorescence in situ hybridization to metaphase chromosomes, the soluble epoxide hydrolase gene was then localized to chromosomal region 8p21-p12.
        
Title: cDNA cloning and expression of a soluble epoxide hydrolase from human liver Beetham JK, Tian T, Hammock BD Ref: Archives of Biochemistry & Biophysics, 305:197, 1993 : PubMed
We report the cloning and expression of a cDNA that encodes a soluble epoxide hydrolase from human liver. The 2101-base clone predicts a 554-residue protein (M(r) 62,640) with an apparently imperfect peroxisomal targeting signal of Ser-Lys-Met at the carboxy terminus. The cDNA was expressed in the baculovirus system in the Spodoptera frugiperda 21 cell line. The recombinant protein was similar to soluble epoxide hydrolase isolated from human liver in terms of molecular weight, hydrolytic activity, inhibition, and immunoreactivity.
        
Title: Purification of human liver cytosolic epoxide hydrolase and comparison to the microsomal enzyme Wang P, Meijer J, Guengerich FP Ref: Biochemistry, 21:5769, 1982 : PubMed
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.