(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MRLHRLRARLSAVACGLLLLLVRGQGQDSASPIRTTHTGQVLGSLVHVKG ANAGVQTFLGIPFAKPPLGPLRFAPPEPPESWSGVRDGTTHPAMCLQDLT AVESEFLSQFNMTFPSDSMSEDCLYLSIYTPAHSHEGSNLPVMVWIHGGA LVFGMASLYDGSMLAALENVVVVIIQYRLGVLGFFSTGDKHATGNWGYLD QVAALRWVQQNIAHFGGNPDRVTIFGESAGGTSVSSLVVSPISQGLFHGA IMESGVALLPGLIASSADVISTVVANLSACDQVDSEALVGCLRGKSKEEI LAINKPFKMIPGVVDGVFLPRHPQELLASADFQPVPSIVGVNNNEFGWLI PKVMRIYDTQKEMDREASQAALQKMLTLLMLPPTFGDLLREEYIGDNGDP QTLQAQFQEMMADSMFVIPALQVAHFQCSRAPVYFYEFQHQPSWLKNIRP PHMKADHGDELPFVFRSFFGGNYIKFTEEEEQLSRKMMKYWANFARNGNP NGEGLPHWPLFDQEEQYLQLNLQPAVGRALKAHRLQFWKKALPQKIQELE EPEERHTEL
Carboxylesterase 2 (CES2/Ces2) proteins exert established roles in (pro)drug metabolism. Recently, human and murine CES2/Ces2c have been discovered as triglyceride (TG) hydrolases implicated in the development of obesity and fatty liver disease. The murine Ces2 family consists of seven homologous genes as opposed to a single CES2 gene in humans. However, the mechanistic role of Ces2 protein family members is not completely understood. In this study, we examined activities of all Ces2 members towards TGs, diglycerides (DGs) and monoglycerides (MGs) as substrate. Besides CES2/Ces2c, we measured significant TG hydrolytic activities for Ces2a, Ces2b, and Ces2e. Notably, these Ces2 members and CES2 efficiently hydrolyzed DGs and MGs and their activities even surpassed those measured for TG hydrolysis. The localization of CES2/Ces2c proteins at the ER may implicate a role of these lipases in lipid signaling pathways. We found divergent expression of Ces2 genes in the liver and intestine of mice on high fat diet, which could relate to changes in lipid signaling. Finally, we demonstrate reduced CES2 expression in the colon of patients with inflammatory bowel disease and a similar decline in Ces2 expression in the colon of a murine colitis model. Together, these results demonstrate that CES2/Ces2 members are highly efficient DG and MG hydrolases that may play an important role in liver and gut lipid signaling.
        
Title: Overexpressed CES2 has prognostic value in CRC and knockdown CES2 reverses L-OHP-resistance in CRC cells by inhibition of the PI3K signaling pathway Zhang Y, Sun L, Sun Y, Chen Y, Wang X, Xu M, Chi P, Xu Z, Lu X Ref: Experimental Cell Research, :111856, 2020 : PubMed
CES-2 (carboxylesterase-2) belongs to the carboxylesterase gene family, which plays crucial roles in lipid mobilization and chemosensitivity to irinotecan. However, its role in chemosensitivity to oxaliplatin (L-OHP) remains unclear. Herein, L-OHP-resistant cells (HCT-116L and RKOL) were established by increasing the concentration of L-OHP. The results showed that CES2 expression was upregulated in L-OHP-resistant tissues and cells lines (P<0.01). Low expression of CES2 correlated with a better survival, and the results were further confirmed in the R2 platform: a biologist friendly web-based genomics analysis and visualization application. Downregulation of CES2 suppressed cell proliferation, induced apoptosis and reversed L-OHP resistance by medicating the PI3K signaling pathway in L-OHP-resistant cells. However, both PI3K inhibitor (LY294002) and activator (IGF-1) could not medicate CES2 expression. These findings indicated that CES2 may be utilized as a novel biomarker and therapeutic target for L-OHP resistance in CRC treatment.
Carboxylesterase 2 (CES2) is instrumental for conversion of ester-containing prodrugs in cancer treatment. Novel treatment strategies are exceedingly needed for cholangiocarcinoma (CCA) patients. Here, we assessed CES2 expression by immunohistochemistry in a CCA cohort comprising 171 non-liver fluke associated, intrahepatic (n = 72) and extrahepatic (perihilar: n = 56; distal: n = 43) CCAs. Additionally, 80 samples of high-grade biliary intraepithelial neoplastic tissues and 158 corresponding samples of histological normal, non-neoplastic biliary tract tissues were included. CES2 expression was highest in non-neoplastic biliary tissue and significantly decreased in CCA. Patients showing any CES2 expression in tumor cells had a significantly better overall survival compared to negative cases (p = 0.008). This survival benefit was also maintained after stratification of CES2-positive cases, by comparing low, medium and high CES2 expression levels (p-trend = 0.0006). Evaluation of CCA subtypes showed the survival difference to be restricted to extrahepatic tumors. Correlation of CES2 expression with data of tumor-infiltrating immune cells showed that particularly CD8+ T cells were more frequently detected in CES2-positive CCAs. Furthermore, treatment of CCA cell lines with the prodrug Irinotecan reduced cell viability, increased cytotoxicity and modulated inflammatory gene expression. In conclusion, reduced CES2 expression is associated with poor outcome and low CD8+ T cell infiltration in CCA patients. Further clinical studies could show, whether CES2 expression may serve as a predictive marker in patients treated with prodrugs converted by CES2.
        
30 lessTitle: Prognostic and Immunological Roles of CES2 in Breast Cancer and Potential Application of CES2-Targeted Fluorescent Probe DDAB in Breast Surgery Qu W, Yao Y, Liu Y, Jo H, Zhang Q, Zhao H Ref: Int J Gen Med, 16:1567, 2023 : PubMed
PURPOSE: The expression and function of CES2 in breast cancer (BRCA) has not been fully elucidated. The purpose of this study was to investigate its clinical significance in BRCA. PATIENTS AND METHODS: Bioinformatics analysis tools and databases, including The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) databases, SURVIVAL packages, STRING database, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene set variation analysis (GSVA), and Tumor Immunity Estimation Resource (TIMER), were utilized to measure the expression level and clarify the clinical significance of CES2 in BRCA. In addition, we verified the expression level of CES2 in BRCA at the cellular and tissue levels by Western blot, immunohistochemistry (IHC) and real-time fluorescence quantitative PCR assays. Furthermore, DDAB is the first reported near-infrared fluorescent probe that can be used to monitor CES2 in vivo. We applied the CES2-targeted fluorescent probe DDAB in BRCA for the first time and verified its physicochemical properties and labeling sorting ability by CCK-8, cytofluorimetric imaging, flow cytometry fluorescence detection, and isolated human tumor tissue imaging assays. RESULTS: The expression of CES2 was higher in normal tissues than that in BRCA tissues. Patients with lower CES2 expression in the BRCA T4 stage had a poorer prognosis. Finally, we applied the CES2-targeted fluorescent probe DDAB in BRCA for the first time, which was demonstrated to have good cellular imaging performance with low biological toxicity in BRCA cells and ex vivo human breast tumor tissue models. CONCLUSION: CES2 can be considered a potential biomarker to predict the prognosis of breast cancer at stage T4 and might contribute to the development of immunological treatment strategies. Meanwhile, CES2 is able to distinguish between breast normal and tumor tissues, the CES2-targeting NIR fluorescent probe DDAB may have potential for surgical applications in BRCA.
Carboxylesterase 2 (CES2/Ces2) proteins exert established roles in (pro)drug metabolism. Recently, human and murine CES2/Ces2c have been discovered as triglyceride (TG) hydrolases implicated in the development of obesity and fatty liver disease. The murine Ces2 family consists of seven homologous genes as opposed to a single CES2 gene in humans. However, the mechanistic role of Ces2 protein family members is not completely understood. In this study, we examined activities of all Ces2 members towards TGs, diglycerides (DGs) and monoglycerides (MGs) as substrate. Besides CES2/Ces2c, we measured significant TG hydrolytic activities for Ces2a, Ces2b, and Ces2e. Notably, these Ces2 members and CES2 efficiently hydrolyzed DGs and MGs and their activities even surpassed those measured for TG hydrolysis. The localization of CES2/Ces2c proteins at the ER may implicate a role of these lipases in lipid signaling pathways. We found divergent expression of Ces2 genes in the liver and intestine of mice on high fat diet, which could relate to changes in lipid signaling. Finally, we demonstrate reduced CES2 expression in the colon of patients with inflammatory bowel disease and a similar decline in Ces2 expression in the colon of a murine colitis model. Together, these results demonstrate that CES2/Ces2 members are highly efficient DG and MG hydrolases that may play an important role in liver and gut lipid signaling.
        
Title: Remdesivir potently inhibits carboxylesterase-2 through covalent modifications: signifying strong drug-drug interactions Shen Y, Eades W, Yan B Ref: Fundamental & Clinical Toxicology, 35:432, 2021 : PubMed
Remdesivir was recently approved to treat COVID-19. While this antiviral agent delivers clinical benefits, several safety concerns in many cases have been raised. This study reports that remdesivir at nanomolar concentrations inhibits carboxylesterase-2 (CES2) through covalent modifications. CES2 is a major drug-metabolizing enzyme. The combination of high potency with irreversible inhibition concludes that cautions must be exercised when remdesivir is used along with drugs hydrolyzed by CES2.
BACKGROUND AND OBJECTIVE: Rapamycin and its semi-synthetic analogues (rapalogues) are frequently used in combination with other prescribed medications in clinical settings. Although the inhibitory effects of rapalogues on cytochrome P450 enzymes (CYPs) have been well examined, the inhibition potentials of rapalogues on human esterases have not been investigated. Herein, the inhibition potentials and inhibitory mechanisms of six marketed rapalogues on human esterases are investigated. METHODS: The inhibitory effects of six marketed rapalogues (rapamycin, zotarolimus, temsirolimus, everolimus, pimecrolimus and tacrolimus) on three major esterases, including human carboxylesterases 1 (hCES1A), human carboxylesterases 2 (hCES2A) and butyrylcholinesterase (BuChE), were assayed using isozyme-specific substrates. Inhibition kinetic analyses and docking simulations were performed to investigate the inhibitory mechanisms of the rapalogues with strong hCES2A inhibition potency. RESULTS: Zotarolimus and pimecrolimus displayed strong inhibition of human hCES2A but these agents did not inhibit hCES1A or BuChE. Further investigation demonstrated that zotarolimus could strongly inhibit intracellular hCES2A in living HepG2 cells, with an estimated IC(50) value of 4.09 microM. Inhibition kinetic analyses revealed that zotarolimus inhibited hCES2A-catalyzed fluorescein diacetate hydrolysis in a mixed manner, with the K(i) value of 1.61 microM. Docking simulations showed that zotarolimus could tightly bind on hCES2A at two district ligand-binding sites, consistent with its mixed inhibition mode. CONCLUSION: Our findings demonstrate that several marketed rapalogues are potent and specific hCES2A inhibitors, and these agents can serve as leading compounds for the development of more efficacious hCES2A inhibitors to modulate the pharmacokinetic profiles and toxicity of hCES2A-substrate drugs (such as the anticancer agent irinotecan).
        
Title: Overexpressed CES2 has prognostic value in CRC and knockdown CES2 reverses L-OHP-resistance in CRC cells by inhibition of the PI3K signaling pathway Zhang Y, Sun L, Sun Y, Chen Y, Wang X, Xu M, Chi P, Xu Z, Lu X Ref: Experimental Cell Research, :111856, 2020 : PubMed
CES-2 (carboxylesterase-2) belongs to the carboxylesterase gene family, which plays crucial roles in lipid mobilization and chemosensitivity to irinotecan. However, its role in chemosensitivity to oxaliplatin (L-OHP) remains unclear. Herein, L-OHP-resistant cells (HCT-116L and RKOL) were established by increasing the concentration of L-OHP. The results showed that CES2 expression was upregulated in L-OHP-resistant tissues and cells lines (P<0.01). Low expression of CES2 correlated with a better survival, and the results were further confirmed in the R2 platform: a biologist friendly web-based genomics analysis and visualization application. Downregulation of CES2 suppressed cell proliferation, induced apoptosis and reversed L-OHP resistance by medicating the PI3K signaling pathway in L-OHP-resistant cells. However, both PI3K inhibitor (LY294002) and activator (IGF-1) could not medicate CES2 expression. These findings indicated that CES2 may be utilized as a novel biomarker and therapeutic target for L-OHP resistance in CRC treatment.
Carboxylesterase 2 (CES2) is instrumental for conversion of ester-containing prodrugs in cancer treatment. Novel treatment strategies are exceedingly needed for cholangiocarcinoma (CCA) patients. Here, we assessed CES2 expression by immunohistochemistry in a CCA cohort comprising 171 non-liver fluke associated, intrahepatic (n = 72) and extrahepatic (perihilar: n = 56; distal: n = 43) CCAs. Additionally, 80 samples of high-grade biliary intraepithelial neoplastic tissues and 158 corresponding samples of histological normal, non-neoplastic biliary tract tissues were included. CES2 expression was highest in non-neoplastic biliary tissue and significantly decreased in CCA. Patients showing any CES2 expression in tumor cells had a significantly better overall survival compared to negative cases (p = 0.008). This survival benefit was also maintained after stratification of CES2-positive cases, by comparing low, medium and high CES2 expression levels (p-trend = 0.0006). Evaluation of CCA subtypes showed the survival difference to be restricted to extrahepatic tumors. Correlation of CES2 expression with data of tumor-infiltrating immune cells showed that particularly CD8+ T cells were more frequently detected in CES2-positive CCAs. Furthermore, treatment of CCA cell lines with the prodrug Irinotecan reduced cell viability, increased cytotoxicity and modulated inflammatory gene expression. In conclusion, reduced CES2 expression is associated with poor outcome and low CD8+ T cell infiltration in CCA patients. Further clinical studies could show, whether CES2 expression may serve as a predictive marker in patients treated with prodrugs converted by CES2.
        
Title: Clinical implications of genetic variation in carboxylesterase drug metabolism Chen F, Zhang B, Parker RB, Laizure SC Ref: Expert Opin Drug Metab Toxicol, 14:131, 2018 : PubMed
INTRODUCTION: Mammalian carboxylesterase enzymes are a highly conserved metabolic pathway involved in the metabolism of endogenous and exogenous compounds including many widely prescribed therapeutic agents. Recent advances in our understanding of genetic polymorphisms affecting enzyme activity have exposed potential therapeutic implications. Areas covered: The aims of this review are to provide an overview of carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) gene structure, to summarize the known polymorphism affecting substrate-drug metabolism, and to assess the potential therapeutic implications of genetic variations affecting enzyme function. Expert opinion: Genetic variability in carboxylesterase drug metabolism is a nascent area of research with only a handful of the thousands of SNPs investigated for their potential effects of enzyme activity or carboxylesterase-substrate disposition and therapeutics. It remains to be determined if the wide variability in enzyme activity can be explained by genetic variation, and used in personalized medicine to improve clinical outcomes.
        
Title: Potent, Irreversible Inhibition of Human Carboxylesterases by Tanshinone Anhydrides Isolated from Salvia miltiorrhiza (Danshen) Hatfield MJ, Binder RJ, Gannon R, Fratt EM, Bowling J, Potter PM Ref: Journal of Natural Products, 81:2410, 2018 : PubMed
The roots of Salvia miltiorrhiza ("Danshen") have been used in Chinese herbal medicine for centuries for a host of different conditions. While the exact nature of the active components of this material are unknown, large amounts of tanshinones are present in extracts derived from these samples. Recently, the tanshinones have been demonstrated to be potent human carboxylesterase (CE) inhibitors, with the ability to modulate the biological activity of esterified drugs. During the course of these studies, we also identified more active, irreversible inhibitors of these enzymes. We have purified, identified, and synthesized these molecules and confirmed them to be the anhydride derivatives of the tanshinones. These compounds are exceptionally potent inhibitors ( Ki < 1 nM) and can inactivate human CEs both in vitro and in cell culture systems and can modulate the metabolism of the esterified drug oseltamivir. Therefore, the coadministration of Danshen extracts with drugs that contain the ester chemotype should be minimized since, not only is transient inhibition of CEs observed with the tanshinones, but also prolonged irreversible inhibition arises via interaction with the anhydrides.
        
Title: Age-Dependent Absolute Abundance of Hepatic Carboxylesterases (CES1 and CES2) by LC-MS/MS Proteomics: Application to PBPK Modeling of Oseltamivir In Vivo Pharmacokinetics in Infants Boberg M, Vrana M, Mehrotra A, Pearce RE, Gaedigk A, Bhatt DK, Leeder JS, Prasad B Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 45:216, 2017 : PubMed
The age-dependent absolute protein abundance of carboxylesterase (CES) 1 and CES2 in human liver was investigated and applied to predict infant pharmacokinetics (PK) of oseltamivir. The CES absolute protein abundance was determined by liquid chromatography-tandem mass spectrometry proteomics in human liver microsomal and cytosolic fractions prepared from tissue samples obtained from 136 pediatric donors and 35 adult donors. Two surrogate peptides per protein were selected for the quantification of CES1 and CES2 protein abundance. Purified CES1 and CES2 protein standards were used as calibrators, and the heavy labeled peptides were used as the internal standards. In hepatic microsomes, CES1 and CES2 abundance (in picomoles per milligram total protein) increased approximately 5-fold (315.2 vs. 1664.4) and approximately 3-fold (59.8 vs. 174.1) from neonates to adults, respectively. CES1 protein abundance in liver cytosol also showed age-dependent maturation. Oseltamivir carboxylase activity was correlated with protein abundance in pediatric and adult liver microsomes. The protein abundance data were then used to model in vivo PK of oseltamivir in infants using pediatric physiologically based PK modeling and incorporating the protein abundance-based ontogeny function into the existing pediatric Simcyp model. The predicted pediatric area under the curve, maximal plasma concentration, and time for maximal plasma concentration values were below 2.1-fold of the clinically observed values, respectively.
Tissue-restricted bioreactions can be utilized to design chemical-biological tools and prodrugs. We have developed a fluorescent-substrate-library-based enzyme discovery approach to screen tissue extracts for enzymatic activities of interest. Assay-positive candidate proteins were identified by diced electrophoresis gel assay followed by peptide mass fingerprinting. We discovered that pyruvyl anilide is specifically hydrolyzed by carboxylesterase 2 (CES2), which is predominantly localized in the liver and kidney. We show that the pyruvyl targeting group/CES2 enzyme pair can be used to deliver the 7-amino-4-methylcoumarin fluorophore specifically to the liver and kidney in vivo. Our screening approach should be useful to find other masking group/enzyme pairs suitable for development of fluorescent substrates and prodrugs.
        
Title: The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect Merali Z, Ross S, Pare G Ref: Drug Metabol Drug Interact, 29:143, 2014 : PubMed
Abstract Human carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are serine esterases responsible for the hydrolysis of ester and amide bonds present in a number of pharmaceutical products. Several common genetic variants of the CES1 and CES2 genes have been shown to influence drug metabolism and clinical outcomes. Polymorphisms of the CES1 gene have been reported to affect the metabolism of dabigatran etexilate, methylphenidate, oseltamivir, imidapril, and clopidogrel, whereas variants of the CES2 gene have been found to affect aspirin and irinotecan. Although the findings of these studies may be preliminary, they demonstrate the potential clinical utility of CES polymorphisms; however, more research is required, especially with respect to CES2. In this review, we outline the functional, molecular, and genetic properties of CES1 and CES2, and highlight recent studies that have shown relations between CES1 and CES2 variants and contemporary pharmacotherapy.
        
Title: Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase Shimizu M, Fukami T, Nakajima M, Yokoi T Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 42:1103, 2014 : PubMed
Esterases catalyze the hydrolysis of therapeutic drugs containing esters or amides in their structures. Human carboxylesterase (CES) and arylacetamide deacetylase (AADAC) are the major enzymes that catalyze the hydrolysis of drugs in the liver. Characterization of the enzyme(s) responsible for drug metabolism is required in drug development and to realize optimal drug therapy. Because multiple enzymes may show a metabolic potency for a given compound, inhibition studies using chemical inhibitors are useful tools to determine the contribution of each enzyme in human tissue preparations. The purpose of this study was to find specific inhibitors for human CES1, CES2, and AADAC. We screened 542 chemicals for the inhibition potency toward hydrolase activities of p-nitrophenyl acetate by recombinant CES1, CES2, and AADAC. We found that digitonin and telmisartan specifically inhibited CES1 and CES2 enzyme activity, respectively. Vinblastine potently inhibited both AADAC and CES2, but no specific inhibitor of AADAC was found. The inhibitory potency and specificity of these compounds were also evaluated by monitoring the effects on hydrolase activity of probe compounds of each enzyme (CES1: lidocaine, CES2: CPT-11, AADAC: phenacetin) in human liver microsomes. Telmisartan and vinblastine strongly inhibited the hydrolysis of CPT-11 and/or phenacetin, but digitonin did not strongly inhibit the hydrolysis of lidocaine, indicating that the inhibitory potency of digitonin was different between recombinant CES1 and liver microsomes. Although we could not find a specific inhibitor of AADAC, the combined use of telmisartan and vinblastine could predict the responsibility of human AADAC to drug hydrolysis.
OBJECTIVES: Rifampicin is known to be deacetylated in vivo, resulting in its metabolite 25-desacetyl rifampicin, but the enzyme metabolizing rifampicin and the association of this process with any genetic variation have not yet been elucidated. In this study, genetic variations of a surrogate enzyme, carboxylesterase 2 (CES2), and their association with the metabolism of this drug, were investigated. METHODS: Plasma concentrations of rifampicin and 25-desacetyl rifampicin were measured in 35 patients with tuberculosis receiving a first-line antituberculosis treatment. Direct PCR-based sequencing of the CES2 gene, covering all 12 exons, the 5'-untranslated region (UTR), the 3'-UTR and intronic and promoter regions, was performed. A dual luciferase reporter assay was carried out to assess whether variations in the promoter region affected the transcription of this gene. RESULTS: Ten variations were detected, of which two were in the candidate promoter region, five in introns and three in the 3'-UTR. One of the variations in the 3'-UTR was a novel variation. Genotypes at three closely linked variations (c.-2263A > G, c.269-965A > G and c.1612 + 136G > A) and c.1872*302_304delGAA were associated with significantly different plasma rifampicin concentrations. The mean plasma rifampicin concentration significantly increased with the number of risk alleles at the three closely linked variations, while the plasma concentration decreased along with an increase in the number of risk alleles at c.1872*302_304delGAA. When HepG2 cells were transfected with a luciferase reporter construct bearing the c.-2263G allele, luciferase activities were consistently decreased (by 5%-10%) compared with those harbouring the c.-2263A sequence. CONCLUSIONS: Variations in CES2, especially c.-2263A > G in the promoter region, may alter rifampicin metabolism by affecting expression of the gene.
        
Title: Carboxylesterase-2 is a highly sensitive target of the antiobesity agent orlistat with profound implications in the activation of anticancer prodrugs Xiao D, Shi D, Yang D, Barthel B, Koch TH, Yan B Ref: Biochemical Pharmacology, 85:439, 2013 : PubMed
Orlistat has been the most used anti-obesity drug and the mechanism of its action is to reduce lipid absorption by inhibiting gastrointestinal lipases. These enzymes, like carboxylesterases (CESs), structurally belong to the alpha/beta hydrolase fold superfamily. Lipases and CESs are functionally related as well. Some CESs (e.g., human CES1) have been shown to hydrolyze lipids. This study was designed to test the hypothesis that orlistat inhibits CESs with higher potency toward CES1 than CES2, a carboxylesterase with little lipase activity. Liver microsomes and recombinant CESs were tested for the inhibition of the hydrolysis of standard substrates and the anticancer prodrugs pentyl carbamate of p-aminobenzyl carbamate of doxazolidine (PPD) and irinotecan. Contrary to the hypothesis, orlistat at 1nM inhibited CES2 activity by 75% but no inhibition on CES1, placing CES2 one of the most sensitive targets of orlistat. The inhibition varied among some CES2 polymorphic variants. Pretreatment with orlistat reduced the cell killing activity of PPD. Certain mouse but not rat CESs were also highly sensitive. CES2 is responsible for the hydrolysis of many common drugs and abundantly expressed in the gastrointestinal track and liver. Inhibition of this carboxylesterase probably presents a major source for altered therapeutic activity of these medicines if co-administered with orlistat. In addition, orlistat has been linked to various types of organ toxicities, and this study provides an alternative target potentially involved in these toxicological responses.
        
Title: Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2 Wang J, Williams ET, Bourgea J, Wong YN, Patten CJ Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 39:1329, 2011 : PubMed
Human carboxylesterase (CES) 1 and CES2 are members of the serine hydrolase superfamily, and both exhibit broad substrate specificity and are involved in xenobiotic and endobiotic metabolism. Although expression of CES1 and CES2 occurs in several organs, their expression in liver and small intestine is predominantly attributed to CES1 and CES2, respectively. We successfully expressed CES1 form b (CES1-b) and form c (CES1-c) as well as CES2 in baculovirus-infected High Five insect cells. With 4-nitrophenyl acetate (4-NPA) as the probe substrate, the K(m) values of recombinant CES1-b and CES2 matched those of human liver microsomes (HLM) and human intestinal microsomes (HIM) with approximately 200 and 180 muM, respectively. Bis(4-nitrophenyl) phosphate potently inhibited 4-NPA hydrolysis by HLM, CES1-b, CES1-c, HIM, and CES2 with IC(50) values less than 1 muM. With fluorescein diacetate (FD) as the substrate, the K(m) values were similar for all enzyme systems, with the exception of CES1-b, which was slightly lower; however, the V(max) values for HIM and CES2 were 39.5 and 14.6 mumol . mg(-1) . min(-1), respectively, which were at least 50-fold higher than those of CES1-b or CES1-c. Loperamide potently inhibited HLM, HIM, and CES2 with similar IC(50) values of approximately 1 muM. Substrate specificity was compared between human tissues and recombinant enzymes. The data suggest the following: 1) FD is a probe substrate for CES2; 2) CES1-b is the predominant form in human liver; and 3) recombinant CES1-b and CES2 expressed in insect cells are functionally consistent with native carboxylesterases expressed in human liver and intestine, respectively.
Carboxylesterases belong to Phase I group of drug metabolizing enzymes. They hydrolyze a variety of drug esters, amides, carbamates and similar structures. There are five 'carboxylesterase' genes listed in the Human Genome Organization database. In this review, we will focus on the CES1, CES2 and CES3 genes and their protein products that have been partially characterized. Several variants of these three CESs result from alternate splicing, single nucleotide polymorphisms and multiple copy variants. The three CESs, are largely localized to tissues that are major sites of drug metabolism like the mucosa of the gastrointestinal tract, lungs and liver but, they differ in tissue-specific expression. The amino acid alignment of the three CESs reveals important conserved catalytic and structural residues. There are interesting insertions and deletions that may affect enzymatic function as determined by homology modeling of CES3 using the CES1 three-dimensional structure. A comparison of the substrate specificity of CES1 versus CES2 reveals broad but distinct substrate preferences. There is little information on the substrate specificity of CES3 but it seems to have a lower catalytic efficiency than the other two CESs for selected substrates.
        
Title: Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin Yang D, Pearce RE, Wang X, Gaedigk R, Wan YJ, Yan B Ref: Biochemical Pharmacology, 77:238, 2009 : PubMed
Carboxylesterases hydrolyze chemicals containing such functional groups as a carboxylic acid ester, amide and thioester. The liver contains the highest carboxylesterase activity and expresses two major carboxylesterases: HCE1 and HCE2. In this study, we analyzed 104 individual liver samples for the expression patterns of both carboxylesterases. These samples were divided into three age groups: adults (>or= 18 years of age), children (0 days-10 years) and fetuses (82-224 gestation days). In general, the adult group expressed significantly higher HCE1 and HCE2 than the child group, which expressed significantly higher than the fetal group. The age-related expression was confirmed by RT-qPCR and Western immunoblotting. To determine whether the expression patterns reflected the hydrolytic activity, liver microsomes were pooled from each group and tested for the hydrolysis of drugs such as oseltamivir and insecticides such as deltamethrin. Consistent with the expression patterns, adult microsomes were approximately 4 times as active as child microsomes and 10 times as active as fetal microsomes in hydrolyzing these chemicals. Within the same age group, particularly in the fetal and child groups, a large inter-individual variability was detected in mRNA (430-fold), protein (100-fold) and hydrolytic activity (127-fold). Carboxylesterases are recognized to play critical roles in drug metabolism and insecticide detoxication. The findings on the large variability among different age groups or even within the same age group have important pharmacological and toxicological implications, particularly in relation to pharmacokinetic alterations of ester drugs in children and vulnerability of fetuses and children to pyrethroid insecticides.
PURPOSE: Carboxylesterase 2 (CES2) is involved in the activation of the anticancer drug irinotecan to its active metabolite SN-38. We previously identified a single nucleotide polymorphism (SNP), with an allele frequency around 10%, as possibly involved in enzyme expression (Clin Pharmacol Ther 76:528-535, 2004), which could explain the large individual variation in SN-38 disposition. METHODS: The 830C>G SNP, located in the 5' untranslated region of the gene, was analysed in various DNA samples extracted from: (1) the National Cancer Institute NCI-60 panel of human tumour cell lines; (2) a collection of 104 samples of normal tissue from colorectal cancer patients; (3) blood samples from a population of 95 normal subjects; (4) a collection of 285 human livers. CES2 genotypes were tentatively related to irinotecan cytotoxicity and CES2 expression in the NCI-60 panel; to response to treatment and event-free survival in colorectal cancer patients; and to CES2 expression and catalytic activity in subsets of the human liver collection. RESULTS: No significant relationship was found in the NCI-60 panel between CES2 830C>G genotype and irinotecan cytotoxicity or CES2 expression. No significant relationship was found between CES2 830C>G genotype and the toxicity and therapeutic efficacy (tumour response, event-free survival) of irinotecan in colorectal cancer patients. There was no significant relationship between CES2 830C>G genotype and CES2 expression and catalytic activity determined in a subset of genotype-selected liver samples. CONCLUSION: The 830C>G SNP of CES2 is unlikely to have significant functional consequences on CES2 expression, activity or function.
Human carboxylesterase 2 (hCE-2) is a member of the serine esterase superfamily and is responsible for hydrolysis of a wide variety of xenobiotic and endogenous esters. hCE-2 also activates an anticancer drug, irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin, CPT-11), into its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38). In this study, a comprehensive haplotype analysis of the CES2 gene, which encodes hCE-2, in a Japanese population was conducted. Using 21 single nucleotide polymorphisms (SNPs), including 4 nonsynonymous SNPs, 100C>T (Arg(34)Trp, *2), 424G>A (Val(142)Met, *3), 1A>T (Met(1)Leu, *5), and 617G>A (Arg(206)His, *6), and a SNP at the splice acceptor site of intron 8 (IVS8-2A>G, *4), 20 haplotypes were identified in 262 Japanese subjects. In 176 Japanese cancer patients who received irinotecan, associations of CES2 haplotypes and changes in a pharmacokinetic parameter, (SN-38 + SN-38G)/CPT-11 area under the plasma concentration curve (AUC) ratio, were analyzed. No significant association was found among the major haplotypes of the *1 group lacking nonsynonymous or defective SNPs. However, patients with nonsynonymous SNPs, 100C>T (Arg(34)Trp) or 1A>T (Met(1)Leu), showed substantially reduced AUC ratios. In vitro functional characterization of the SNPs was conducted and showed that the 1A>T SNP affected translational but not transcriptional efficiency. These findings are useful for further pharmacogenetic studies on CES2-activated prodrugs.
        
Title: Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2 Yang J, Shi D, Yang D, Song X, Yan B Ref: Molecular Pharmacology, 72:686, 2007 : PubMed
Carboxylesterases constitute a class of enzymes that play important roles in the hydrolytic metabolism of drugs and other xenobiotics. Patients with liver conditions such as cirrhosis show increased secretion of proinflammatory cytokines [e.g., interleukin-6 (IL-6)] and decreased capacity of hydrolysis. In this study, we provide a molecular explanation linking cytokine secretion directly to the decreased capacity of hydrolytic biotransformation. In both primary hepatocytes and HepG2 cells, treatment with IL-6 decreased the expression of human carboxyl-esterases HCE1 and HCE2 by as much as 60%. The decreased expression occurred at both mRNA and protein levels, and it was confirmed by enzymatic assay. In cotransfection experiments, both HCE1 and HCE2 promoters were significantly repressed, and the repression was comparable with the decrease in HCE1 and HCE2 mRNA, suggesting that transrepression is responsible for the suppressed expression. In addition, pretreatment with IL-6 altered the cellular responsiveness in an opposite manner of overexpression of HCE1 and HCE2 toward various ester therapeutic agents (e.g., clopidogrel). Transfection of HCE1, for example, decreased the cytotoxicity induced by antithrombogenic agent clopidogrel, whereas pretreatment with IL-6 increased the cytotoxicity. Such a reversal was observed with other ester drugs, including anticancer agent irinotecan and anti-influenza agent oseltamivir. The altered cellular responsiveness was observed when drugs were assayed at sub- and low-micromolar concentrations, suggesting that suppressed expression of carboxylesterases by IL-6 has profound pharmacological consequences, particularly with those that are hydrolyzed in an isoform-specific manner.
        
Title: Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2 Nishi K, Huang H, Kamita SG, Kim IH, Morisseau C, Hammock BD Ref: Archives of Biochemistry & Biophysics, 445:115, 2006 : PubMed
Carboxylesterases hydrolyze a large array of endogenous and exogenous ester-containing compounds, including pyrethroid insecticides. Herein, we report the specific activities and kinetic parameters of human carboxylesterase (hCE)-1 and hCE-2 using authentic pyrethroids and pyrethroid-like, fluorescent surrogates. Both hCE-1 and hCE-2 hydrolyzed type I and II pyrethroids with strong stereoselectivity. For example, the trans-isomers of permethrin and cypermethrin were hydrolyzed much faster than corresponding cis-counterparts by both enzymes. Kinetic values of hCE-1 and hCE-2 were determined using cypermethrin and 11 stereoisomers of the pyrethroid-like, fluorescent surrogates. K(m) values for the authentic pyrethroids and fluorescent surrogates were in general lower than those for other ester-containing substrates of hCEs. The pyrethroid-like, fluorescent surrogates were hydrolyzed at rates similar to the authentic pyrethroids by both enzymes, suggesting the potential of these compounds as tools for high throughput screening of esterases that hydrolyze pyrethroids.
        
Title: Hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide Quinney SK, Sanghani SP, Davis WI, Hurley TD, Sun Z, Murry DJ, Bosron WF Ref: Journal of Pharmacology & Experimental Therapeutics, 313:1011, 2005 : PubMed
Capecitabine is an oral prodrug of 5-fluorouracil that is indicated for the treatment of breast and colorectal cancers. A three-step in vivo-targeted activation process requiring carboxylesterases, cytidine deaminase, and thymidine phosphorylase converts capecitabine to 5-fluorouracil. Carboxylesterases hydrolyze capecitabine's carbamate side chain to form 5'-deoxy-5-fluorocytidine (5'-DFCR). This study examines the steady-state kinetics of recombinant human carboxylesterase isozymes carboxylesterase (CES) 1A1, CES2, and CES3 for hydrolysis of capecitabine with a liquid chromatography/mass spectroscopy assay. Additionally, a spectrophotometric screening assay was utilized to identify drugs that may inhibit carboxylesterase activation of capecitabine. CES1A1 and CES2 hydrolyze capecitabine to a similar extent, with catalytic efficiencies of 14.7 and 12.9 min(-1) mM(-1), respectively. Little catalytic activity is detected for CES3 with capecitabine. Northern blot analysis indicates that relative expression in intestinal tissue is CES2 > CES1A1 > CES3. Hence, intestinal activation of capecitabine may contribute to its efficacy in colon cancer and toxic diarrhea associated with the agent. Loperamide is a strong inhibitor of CES2, with a K(i) of 1.5 muM, but it only weakly inhibits CES1A1 (IC(50) = 0.44 mM). Inhibition of CES2 in the gastrointestinal tract by loperamide may reduce local formation of 5'-DFCR. Both CES1A1 and CES2 are responsible for the activation of capecitabine, whereas CES3 plays little role in 5'-DFCR formation.
        
Title: Pharmacogenetics of human carboxylesterase 2, an enzyme involved in the activation of irinotecan into SN-38 Charasson V, Bellott R, Meynard D, Longy M, Gorry P, Robert J Ref: Clinical Pharmacology & Therapeutics, 76:528, 2004 : PubMed
PURPOSE: Irinotecan, a drug widely used in the treatment of advanced colorectal cancers, is a prodrug requiring activation to 7-ethyl-10-hydroxycamptothecin (SN-38) by carboxylesterase 2 (hCE2). The existence of functional polymorphisms in the gene encoding this enzyme could explain the individual variability in drug efficacy and toxicity. We have explored this possibility in looking for single nucleotide polymorphisms and their functional consequence. METHODS: In a series of 115 human deoxyribonucleic acid samples, we have explored the 12 exons of the hCE2 gene, the intron-exon junctions, and the 5'- and 3'-untranslated regions, by denaturing HPLC and sequencing of polymerase chain reaction products. The functionality of the variations identified was studied in 60 human liver samples by measuring hCE2 gene expression by real-time reverse transcriptase-polymerase chain reaction of messenger ribonucleic acid extracts and carboxylesterase activity by use of irinotecan as a substrate. RESULTS: We have identified a total of 11 single nucleotide polymorphisms, none of them able to alter the amino acid sequence of the protein. They are distributed in 10 distinct genotypes in addition to the wild type. The most frequent variation (localized in IVS10) has an allele frequency of 0.17 and has been identified at the homozygous state in 1 sample. hCE2 gene expression and carboxylesterase activity in the variants identified were not significantly different from those measured in wild-type samples. CONCLUSION: The hCE2 gene presents several polymorphisms, none of which seems to be involved in significant variations in protein activity and, therefore, in irinotecan activation.
Human carboxylesterases 1 and 2 (CES1 and CES2) catalyze the hydrolysis of many exogenous compounds. Alterations in carboxylesterase sequences could lead to variability in both the inactivation of drugs and the activation of prodrugs. We resequenced CES1 and CES2 in multiple populations (n = 120) to identify single-nucleotide polymorphisms and confirmed the novel SNPs in healthy European and African individuals (n = 190). Sixteen SNPs were found in CES1 (1 per 300 bp) and 11 in CES2 (1 per 630 bp) in at least one population. Allele frequencies and estimated haplotype frequencies varied significantly between African and European populations. No association between SNPs in CES1 or CES2 was found with respect to RNA expression in normal colonic mucosa; however, an intronic SNP (IVS10-88) in CES2 was associated with reduced CES2 mRNA expression in colorectal tumors. Functional analysis of the novel polymorphisms described in this study is now warranted to identify putative roles in drug metabolism.
Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.
        
Title: Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3 Sanghani SP, Quinney SK, Fredenburg TB, Davis WI, Murry DJ, Bosron WF Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 32:505, 2004 : PubMed
Carboxylesterases metabolize ester, thioester, carbamate, and amide compounds to more soluble acid, alcohol, and amine products. They belong to a multigene family with about 50% sequence identity between classes. CES1A1 and CES2 are the most studied human isoenzymes from class 1 and 2, respectively. In this study, we report the cloning and expression of a new human isoenzyme, CES3, that belongs to class 3. The purified recombinant CES3 protein has carboxylesterase activity. Carboxylesterases metabolize the carbamate prodrug 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin (CPT-11; irinotecan) to its active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38), a potent topoisomerase I inhibitor. CYP3A4 oxidizes CPT-11 to two major oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin (APC) and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin (NPC). In this study, we investigate whether these oxidative metabolites, NPC and APC, can be metabolized to SN-38 by purified human carboxylesterases, CES1A1, CES2, and CES3. We find that CPT-11, APC, and NPC can all be metabolized by carboxylesterases to SN-38. CES2 has the highest catalytic activity of 0.012 min(-1) microM(-1) among the three carboxylesterases studied for hydrolysis of CPT-11. NPC was an equally good substrate of CES2 in comparison to CPT-11, with a catalytic efficiency of 0.005 min(-1) microM(-1). APC was a very poor substrate for all three isoenzymes, exhibiting a catalytic activity of 0.015 x 10(-3) min(-1) microM(-1) for CES2. Catalytic efficiency of CES3 for CPT-11 hydrolysis was 20- to 2000-fold less than that of CES1A1 and CES2. The relative activity of the three isoenzymes was CES2 > CES1A1 >> CES3, for all three substrates.
Carboxylesterases are members of the serine esterase super family important in the metabolism of a wide variety of substrates, including xenobiotics and prodrugs. There are two known carboxylesterases expressed in human liver, small intestine and other tissues, carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2). The aim of this study was to identify polymorphisms in the CES2 gene and determine whether these polymorphisms affect expression levels of CES2 or rate of metabolism of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxy-camptothecin). Microsome samples prepared from liver tissues of 78 normal individuals were used to determine the rate of hydrolysis of irinotecan and procaine (an anaesthetic hydrolysed by CES2 but not CES1). The rate of hydrolysis of irinotecan is highly variable among individuals, ranging from 2.7-138 pmol/mg protein/h (mean +/- SD 26.0 +/- 22.9). Fifteen single nucleotide polymorphisms (SNPs) were identified, one is in an exon, 9 are in introns, three are in the 3'-untranslated region (UTR), and two are in the 5'-flanking region. Eight of the 15 SNP loci have rare allele frequencies greater than 5%, of which three were greater than 20%. Genotyping of samples from the SNP Consortium demonstrated different distributions among African-Americans, Asian-Americans and European-Americans. We also analysed the haplotype structure and estimated linkage disequilibrium (LD). A SNP located in the 5'-UTR (5'-UTR-363) was found in LD with loci in intron 1 (Intron1 + 947, Intron1 + 1361, Intron1 + 1643). Haplotypes with homozygous rare alleles on these loci exhibit lower mRNA levels as determined by real time polymerase chain reaction (P < 0.01) and the incorporation of rare alleles in haplotypes correlate with reduced mRNA (P = 0.03). The 5'-UTR-363 SNP is located in one of the three promoters of CES2. However, we did not observe significant differences in CES2 activities (irinotecan and procaine hydrolysis) among individuals with different haplotypes.
PURPOSE: The purpose was to explore the relationships between irinotecan disposition and allelic variants of genes coding for adenosine triphosphate binding cassette transporters and enzymes of putative relevance for irinotecan. EXPERIMENTAL DESIGN: Irinotecan was administered to 65 cancer patients as a 90-min infusion (dose, 200-350 mg/m(2)), and pharmacokinetic data were obtained during the first cycle. All patients were genotyped for variants in genes encoding MDR1 P-glycoprotein (ABCB1), multidrug resistance-associated proteins MRP-1 (ABCC1) and MRP-2 (canalicular multispecific organic anion transporter; ABCC2), breast cancer resistance protein (ABCG2), carboxylesterases (CES1, CES2), cytochrome p450 isozymes (CYP3A4, CYP3A5), UDP glucuronosyltransferase (UGT1A1), and a DNA-repair enzyme (XRCC1), which was included as a nonmechanistic control. RESULTS: Eighteen genetic variants were found in nine genes of putative importance for irinotecan disposition. The homozygous T allele of the ABCB1 1236C>T polymorphism was associated with significantly increased exposure to irinotecan (P = 0.038) and its active metabolite SN-38 (P = 0.031). Pharmacokinetic parameters were not related to any of the other multiple variant genotypes, possibly because of the low allele frequency. The extent of SN-38 glucuronidation was slightly impaired in homozygous variants of UGT1A1*28, although differences were not statistically significant (P = 0.22). CONCLUSIONS: It is concluded that genotyping for ABCB1 1236C>T may be one of the factors assisting with dose optimization of irinotecan chemotherapy in cancer patients. Additional investigation is required to confirm these findings in a larger population and to assess relationships between irinotecan disposition and the rare variant genotypes, especially in other ethnic groups.
        
Title: Catalog of 680 variations among eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes in the Japanese population Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y Ref: J Hum Genet, 48:249, 2003 : PubMed
We screened DNAs from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes by directly sequencing the relevant genomic regions in their entirety except for repetitive elements. This approach identified 607 SNPs and 73 insertion/deletion polymorphisms among the 19 genes examined. Of the 607 SNPs, 284 were identified in CYP genes, 302 in esterase genes, and 21 in the other two genes ( GGT1, and TGM1); overall, 37 SNPs were located in 5' flanking regions, 496 in introns, 55 in exons, and 19 in 3' flanking regions. These variants should contribute to studies designed to investigate possible correlations between genotypes and phenotypes of disease susceptibility or responsiveness to drug therapy.
Carboxylesterases are a broad class of enzymes important in the detoxification of many ester- or amide-bond containing xenobiotics. They also activate analgesics, anticancer prodrugs, and other biologically active compounds, such as cocaine and heroin. The objective of this work was to identify the CES2 gene structure, complex 5' untranslated regions and three potential promoters for the initiation of transcription in different human tissues. Using bioinformatics and progressive reverse transcriptase-polymerase chain reaction, we found that the 5' untranslated region is more than 1100 bases longer than previously reported. Rapid amplification of cDNA ends showed three distinctive transcription start sites at -74, -629 and -1187. DNA fragments upstream of each of the three transcription start sites were found to be transcriptionally active in HepG2 cells. The distal promoter is active in both orientations, suggesting its potential role in the transcription of another gene, CGI-128, located immediately upstream to the distal promoter in the opposite direction with respect to CES2. Hybridization analyses showed that CES2 is highly expressed in the heart, skeletal muscle, colon, spleen, kidney and liver, but considerably less expressed in fetal tissues (e.g. fetal heart, kidney, spleen, and liver) and cancer cells. It is also evident that the distal promoter is responsible for low level expression of the gene in many tissues, whereas the other two promoters are tissue specific. These findings shed some light on CES2 gene regulation, a gene important in the metabolism of many drugs.
A human liver carboxylesterase (hCE-2) that catalyzes the hydrolysis of the benzoyl group of cocaine and the acetyl groups of 4-methylumbelliferyl acetate, heroin, and 6-monoacetylmorphine was purified from human liver. The purified enzyme exhibited a single band on SDS-polyacrylamide gel electrophoresis with a subunit mass of approximately 60 kDa. The native enzyme was monomeric. The isoelectric point of hCE-2 was approximately 4.9. Treatment with endoglycosidase H caused an increase in electrophoretic mobility indicating that the liver carboxylesterase was a glycoprotein of the high mannose type. The complete cDNA nucleotide sequence was determined. The authenticity of the cDNA was confirmed by a perfect sequence match of 78 amino acids derived from the hCE-2 purified from human liver. The mature 533-amino acid enzyme encoded by this cDNA shared highest sequence identity with the rabbit liver carboxylesterase form 2 (73%) and the hamster liver carboxylesterase AT51p (67%). Carboxylesterases with high sequence identity to hCE-2 have not been reported in mouse and rat liver. hCE-2 exhibited different drug ester substrate specificity from the human liver carboxylesterase called hCE-1, which hydrolyzes the methyl ester of cocaine. hCE-2 had higher catalytic efficiencies for hydrolysis of 4-methylumbelliferyl acetate, heroin, and 6-monoacetylmorphine and greater inhibition by eserine than hCE-1. hCE-2 may play an important role in the degradation of cocaine and heroin in human tissues.
        
Title: Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, Schmitz G Ref: Biochemical & Biophysical Research Communications, 233:117, 1997 : PubMed
A full-length cDNA coding for a putative intestinal carboxylesterase (iCE) was isolated from a human small intestine cDNA library. The cDNA has an open reading frame of 559 amino acids with up to 65% homology to other carboxylesterases of different mammalian species. The deduced amino-acid sequence contains many structural features, that are highly conserved among all carboxylesterase isoenzymes, like the serine esterase active site, an ER-retention signal and one Asn-Xxx-Thr site for N-linked carbohydrate addition. Northern blot analysis revealed that the corresponding mRNA is 3.4-3.6 kb in size and is preferentially expressed in human intestine with a weak signal also in liver. Analysis of cells from the gastrointestinal tract unveiled site-specific, transcriptional regulation of iCE, with higher expression in small intestine and lower expression in colon and rectum. The high expression in small intestine is attributable to a higher expression in jejunum compared to duodenum and ileum.