Homo sapiens (Human) bile-salt-activated lipase, BSSL BAL CEL CEH carboxyl ester lipase chr 9
Comment
The human lactating mammary gland and pancreas produce a lipolytic enzyme, carboxyl-ester lipase, earlier called bile salt-stimulated lipase. Carboxyl-ester lipase is a major component of pancreatic juice and is responsible for the hydrolysis of cholesterol esters as well as a variety of other dietary esters. The enzyme exerts its function in duodenal juice, is activated when mixed with bile salts, and plays an important role in the digestion of milk fat in newborn infants. By genomewide screen in one of their families with diabetes and exocrine pancreatic dysfunction, Raeder et al. (2006) linked diabetes to 9q34 (maximum lod score 5.07). In each of the 2 families with autosomal dominantly inherited diabetes and exocrine pancreas dysfunction described by them, Raeder et al. (2006) demonstrated a different single-base deletion causing frameshift in the variable number of tandem repeats (VNTR normal range 7-23 repeats in healthy controls) of the gene encoding carboxyl-ester lipase (CEL; 114840).tandem repeat domain may contribute to different short and long range interactions with the globular core domain and other macromolecules, including cell membranes. CEL-MODY is a protein misfolding disease caused by a negative gain-of-function effect of the mutant proteins in pancreatic tissues. (AF081673 O75612 onco fetal isoform feto-acinar pancreatic protein.slightly different c-terminus. Human protein for lipoamidase PIR S32318 Trembl Q9UCH1) (On chromosome 9 9q34 in the NT_000529 contig, the gene is followed by a carboxyl ester lipase pseudogene which includes exons 1, 8, 9, 10, and 11 of the wildtype gene peptide ENST00000252493 gene ENSG00000130210). Numerous repeats at the c-term excluded in ESTHER (only n-term Pfam A COesterase 1 544) bile salt-dependent lipase (BSDL)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
1delVNTRsgt1_human-CEL : Two new mutations in the CEL gene causing diabetes and hereditary pancreatitis: How to correctly identify MODY8 cases 1delVNTRsgt4_human-CEL : Two new mutations in the CEL gene causing diabetes and hereditary pancreatitis: How to correctly identify MODY8 cases 3repeatVNTR_human-CEL : Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. C277F : Identification and characterization of novel carboxyl ester lipase gene variants in patients with different subtypes of diabetes C563fsX673 : Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. C596fsX695_human-CEL : C596fsX695_human-CEL Ex.10-11del_human-CEL : Identification and characterization of novel carboxyl ester lipase gene variants in patients with different subtypes of diabetes Ex.8-11del_human-CEL : Identification and characterization of novel carboxyl ester lipase gene variants in patients with different subtypes of diabetes G729_T739del_human-CEL : Identification and characterization of novel carboxyl ester lipase gene variants in patients with different subtypes of diabetes I488T/T548I : The hybrid allele 1 of carboxyl-ester lipase (CEL-HYB1) in Polish pediatric patients with chronic pancreatitis R540C : Identification and characterization of novel carboxyl ester lipase gene variants in patients with different subtypes of diabetes S49CfsX52 : Identification of a Novel Mutation in Carboxyl Ester Lipase Gene in a Patient with MODY-like Diabetes C596fsX695 : Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction.
7 structures(e.g. : 1F6W, 1JMY, 6H0T... more)(less) 1F6W: Human bile-salt-activated lipase, 1JMY: Human bile-salt-activated lipase, 6H0T: Crystal structure of native recombinant human bile salt activated lipase, 6H0V: Crystal structure of tabun surrogate NEDPA inhibited recombinant human bile salt activated lipase, 6H18: Crystal structure of sarin surrogate NIMP inhibited recombinant human bile salt activated lipase, 6H19: Crystal structure of ethyl-paraoxon inhibited recombinant human bile salt activated lipase (aged form), 6H1A: Crystal structure of VX surrogate NEMP inhibited recombinant human bile salt activated lipase Kinetic: human-CEL
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MLTMGRLQLVVLGLTCCWAVASAAKLGAVYTEGGFVEGVNKKLGLLGDSV DIFKGIPFAAPTKALENPQPHPGWQGTLKAKNFKKRCLQATITQDSTYGD EDCLYLNIWVPQGRKQVSRDLPVMIWIYGGAFLMGSGHGANFLNNYLYDG EEIATRGNVIVVTFNYRVGPLGFLSTGDANLPGNYGLRDQHMAIAWVKRN IAAFGGDPNNITLFGESAGGASVSLQTLSPYNKGLIRRAISQSGVALSPW VIQKNPLFWAKKVAEKVGCPVGDAARMAQCLKVTDPRALTLAYKVPLAGL EYPMLHYVGFVPVIDGDFIPADPINLYANAADIDYIAGTNNMDGHIFASI DMPAINKGNKKVTEEDFYKLVSEFTITKGLRGAKTTFDVYTESWAQDPSQ ENKKKTVVDFETDVLFLVPTEIALAQHRANAKSAKTYAYLFSHPSRMPVY PKWVGADHADDIQYVFGKPFATPTGYRPQDRTVSKAMIAYWTNFAKTGDP NMGDSAVPTHWEPYTTENSGYLEITKKMGSSSMKRSLRTNFLRYWTLTYL ALPTVTD
The efficiency of human butyrylcholinesterase (BChE) as a stoichiometric bioscavenger of nerve agents is well established. However, wide use is currently limited by production and purification costs. Aiming at identifying an alternative human protein bioscavenger, we looked for an original scaffold candidate by virtual screening of the Protein Data Bank for functional similarity using the "Surfing the Molecules" software (sumo-pbil.ibcp.fr) and a search model based on the BChE active site topology. Besides the expected acetylcholinesterase and butyrylcholinesterase, we identified a set of bile salt activated lipases structures, among which the human pancreatic lipase (hBAL) that shares 34% identity with BChE. We produced the recombinant enzyme in mammalian cells, purified it, and measured the inhibition constants for paraoxon and surrogates of VX, sarin and tabun. We solved the X-ray structure of apo hBAL and conjugates with paraoxon and the surrogates at resolutions in the 2-A range. These structures allow the assessment of hBAL for scavenging nerve agents. They revealed that hBAL has inverted stereoselectivity for the surrogates of nerve agent compared to human cholinesterases. We observed a remarkable flip of the catalytic histidine driven by the chelation of Zn(2+). Dealkylation of the conjugate, aka aging, was solely observed for paraoxon.
        
Title: Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues Hui DY Ref: Biochimica & Biophysica Acta, 1303:1996, 1996 : PubMed
INTRODUCTION: Mutations of CEL gene were first reported to cause a new type of maturity-onset diabetes of the young (MODY) denoted as MODY8 and then were also found in patients with type 1 (T1D) and type 2 diabetes (T2D). However, its genotype-phenotype relationship has not been fully determined and how carboxyl ester lipase (CEL) variants result in diabetes remains unclear. The aim of our study was to identify pathogenic variants of CEL in patients with diabetes and confirm their pathogenicity. RESEARCH DESIGN AND METHODS: All five patients enrolled in our study were admitted to Shandong Provincial Hospital and diagnosed with diabetes in the past year. Whole-exome sequencing was performed to identify pathogenic variants in three patients with MODY-like diabetes, one newborn baby with T1D and one patient with atypical T2D, as well as their immediate family members. Then the consequences of the identified variants were predicted by bioinformatic analysis. Furthermore, pathogenic effects of two novel CEL variants were evaluated in HEK293 cells transfected with wild-type and mutant plasmids. Finally, we summarized all CEL gene variants recorded in Human Gene Mutation Database and analyzed the mutation distribution of CEL. RESULTS: Five novel heterozygous variants were identified in CEL gene and they were predicted to be pathogenic by bioinformatic analysis. Moreover, in vitro studies indicated that the expression of CEL(R540C) was remarkably increased, while p.G729_T739del variant did not significantly affect the expression of CEL. Both novel variants obviously abrogated the secretion of CEL. Furthermore, we summarized all reported CEL variants and found that 74.3% of missense mutations were located in exons 1, 3, 4, 10 and 11 and most missense variants clustered near catalytic triad, Arg-83 and Arg-443. CONCLUSION: Our study identified five novel CEL variants in patients with different subtypes of diabetes, expanding the gene mutation spectrum of CEL and confirmed the pathogenicity of several novel variants.
MODY8 (maturity-onset diabetes of the young, type 8) is a dominantly inherited monogenic form of diabetes associated with mutations in the carboxyl ester lipase (CEL) gene expressed by pancreatic acinar cells. MODY8 patients develop childhood-onset exocrine pancreas dysfunction followed by diabetes during adulthood. However, it is unclear how CEL mutations cause diabetes. In the present study, we report the transfer of CEL proteins from acinar cells to beta-cells as a form of cross-talk between exocrine and endocrine cells. Human beta-cells show a relatively higher propensity for internalizing the mutant versus the wild-type CEL protein. After internalization, the mutant protein forms stable intracellular aggregates leading to beta-cell secretory dysfunction. Analysis of pancreas sections from a MODY8 patient reveals the presence of CEL protein in the few extant beta-cells. The present study provides compelling evidence for the mechanism by which a mutant gene expressed specifically in acinar cells promotes dysfunction and loss of beta-cells to cause diabetes.
Maturity-onset diabetes of the young (MODY) is a form of diabetes mellitus characterized by autosomal dominant inheritance, early onset, and the absence of pancreatic autoimmune markers. MODY-causing mutations have been identified in 14 genes, and carboxyl ester lipase (CEL) has been implicated in MODY8. We report a Japanese patient with MODY who harbored a heterogeneous mutation in CEL exon 2 (NM_001807.4:c.146_147delCT; NP_001798.2:p.Ser49CysfsTer52). A 13-year-old girl experienced her first episode of diabetic ketoacidosis, during which her endogenous insulin secretion was poor. However, her insulin secretion had apparently recovered 2 months after the commencement of insulin treatment, and no further treatment was required for the following 2 years. Diabetic ketoacidosis recurred when the patient was 15 years old, when her insulin secretion was again poor. Since that time, the patient, who is now 18 years old, has been undergoing continuous insulin treatment. The large fluctuations in her insulin secretory capacity led us to suspect MODY. MODY8 patients that carry a mutation in the variable number of tandem repeats in the last exon of the CEL gene typically show pancreatic exocrine dysfunction. However, in the present case, which features premature termination, there is no involvement of exocrine dysfunction, potentially demonstrating a genotype-phenotype correlation.
OBJECTIVE: Maturity-onset diabetes of the young, type 8 (MODY8) is associated with mutations in the CEL gene, which encodes the digestive enzyme carboxyl ester lipase. Several diabetes cases and families have in recent years been attributed to mutations in CEL without any functional or clinical evidence provided. To facilitate correct MODY8 diagnostics, we screened two cohorts of diabetes patients and delineated the phenotype. RESEARCH DESIGN: Young, lean Swedish and Finnish patients with a diagnosis of type 2 diabetes (352 cases, 406 controls) were screened for mutations in the CEL gene. We also screened 58 Czech MODY cases who had tested negative for common MODY genes. For CEL mutation-positive subjects, family history was recorded, and clinical investigations and pancreatic imaging performed. RESULTS: One Swedish and one Czech case with germline mutation in CEL were identified. Clinical and radiological investigations of these two probands and their families revealed dominantly inherited insulin-dependent diabetes, pancreatic exocrine dysfunction and atrophic pancreas with lipomatosis and cysts. Notably, hereditary pancreatitis was the predominant phenotype in one pedigree. Both families carried single-base pair deletions in the proximal part of the CEL variable number of tandem repeat (VNTR) region in exon 11. The mutations are predicted to lead to aberrant protein tails that make the CEL protein susceptible to aggregation. CONCLUSIONS: The diagnosis of MODY8 requires a pancreatic exocrine phenotype and a deletion in the CEL VNTR in addition to dominantly inherited diabetes. CEL screening may be warranted also in families with hereditary pancreatitis of unknown genetic etiology.
        
Title: Single nucleotide polymorphisms in CEL-HYB1 increase risk for chronic pancreatitis through proteotoxic misfolding Cassidy BM, Zino S, Fjeld K, Molven A, Lowe ME, Xiao X Ref: Hum Mutat, 41:1967, 2020 : PubMed
Genetic variants contribute to the risk of chronic pancreatitis (CP) in adults and children. The risk variant CEL-HYB1, a recombinant hybrid allele of CEL and its neighboring pseudogene (CELP), encodes a pathogenic variant of the pancreatic digestive enzyme carboxyl ester lipase (CEL). We previously identified combinations of two non-synonymous SNPs, c.1463T>C (p. Ile488Thr) and c.1643C>T (p. Thr548Ile), in the break point region of CEL-HYB1. Herein, we tested whether these missense variants alter CP risk and their impact on functional properties of the CEL-HYB1 protein. Examination of CEL-HYB1 haplotypes in European patients and controls revealed that the combinationThr488-Ile548 was present only in cases (p>=.001). The lipase activity of purified recombinant CEL-HYB1 variants showed normal or near normal activity. CEL-HYB variants expressed in HEK293T cells all had decreased secretion compared with CEL, formed intracellular protein aggregates, and triggered endoplasmic reticulum stress. Thus, we propose that the presence of missense variants in CEL-HYB increases the pathogenicity of CEL-HYB1 through misfolding and gain-of-function proteotoxicity. Interestingly, Thr488-Ile548 and Thr488-Thr548 were equally pathogenic in the functional assays even though only the Thr488-Ile548 haplotype was significantly enriched in cases. The explanation for the mismatch between genetic and functional data requires further investigation.
Mutations in the gene encoding the digestive enzyme carboxyl ester lipase (CEL) are linked to pancreatic disease. The CEL variant denoted CEL-HYB predisposes to chronic pancreatitis, whereas the CEL-MODY variant causes MODY8, an inherited disorder of endocrine and exocrine pancreatic dysfunction. Both pathogenic variants exhibit altered biochemical and cellular properties compared with the normal CEL protein (CEL-WT, wild type). We here aimed to investigate effects of CEL variants on pancreatic acinar and ductal cell lines. Following extracellular exposure, CEL-HYB, CEL-MODY, and CEL-WT were endocytosed. The two pathogenic CEL proteins significantly reduced cell viability compared with CEL-WT. We also found evidence of CEL uptake in primary human pancreatic acinar cells and in native ductal tissue. Moreover, coexpression of CEL-HYB or CEL-MODY with CEL-WT affected secretion of the latter, as CEL-WT was observed to accumulate intracellularly to a higher degree in the presence of either pathogenic variant. Notably, in coendocytosis experiments, both pathogenic variants displayed a modest effect on cell viability when CEL-WT was present, indicating that the normal protein might diminish toxic effects conferred by CEL-HYB and CEL-MODY. Taken together, our findings provide valuable insight into how the pathogenic CEL variants predispose to pancreatic disease and why these disorders develop slowly over time.
The efficiency of human butyrylcholinesterase (BChE) as a stoichiometric bioscavenger of nerve agents is well established. However, wide use is currently limited by production and purification costs. Aiming at identifying an alternative human protein bioscavenger, we looked for an original scaffold candidate by virtual screening of the Protein Data Bank for functional similarity using the "Surfing the Molecules" software (sumo-pbil.ibcp.fr) and a search model based on the BChE active site topology. Besides the expected acetylcholinesterase and butyrylcholinesterase, we identified a set of bile salt activated lipases structures, among which the human pancreatic lipase (hBAL) that shares 34% identity with BChE. We produced the recombinant enzyme in mammalian cells, purified it, and measured the inhibition constants for paraoxon and surrogates of VX, sarin and tabun. We solved the X-ray structure of apo hBAL and conjugates with paraoxon and the surrogates at resolutions in the 2-A range. These structures allow the assessment of hBAL for scavenging nerve agents. They revealed that hBAL has inverted stereoselectivity for the surrogates of nerve agent compared to human cholinesterases. We observed a remarkable flip of the catalytic histidine driven by the chelation of Zn(2+). Dealkylation of the conjugate, aka aging, was solely observed for paraoxon.
The enzyme carboxyl ester lipase (CEL), also known as bile salt-dependent or -stimulated lipase (BSDL, BSSL), hydrolyzes dietary fat, cholesteryl esters and fat-soluble vitamins in the duodenum. CEL is mainly expressed in pancreatic acinar cells and lactating mammary glands. The human CEL gene resides on chromosome 9q34.3 and contains a variable number of tandem repeats (VNTR) region that encodes a mucin-like protein tail. Although the number of normal repeats does not appear to significantly influence the risk for pancreatic disease, single-base pair deletions in the first VNTR repeat cause a syndrome of endocrine and exocrine dysfunction denoted MODY8. Hallmarks are low fecal elastase levels and pancreatic lipomatosis manifesting before the age of twenty, followed by development of diabetes and pancreatic cysts later in life. The mutant protein forms intracellular and extracellular aggregates, suggesting that MODY8 is a protein misfolding disease. Recently, a recombined allele between CEL and its pseudogene CELP was discovered. This allele (CEL-HYB) encodes a chimeric protein with impaired secretion increasing five-fold the risk for chronic pancreatitis. The CEL gene has proven to be exceptionally polymorphic due to copy number variants of the CEL-CELP locus and alterations involving the VNTR. Genome-wide association studies or deep sequencing cannot easily pick up this wealth of genetic variation. CEL is therefore an attractive candidate gene for further exploration of links to pancreatic disease.
BACKGROUND/OBJECTIVES: We have recently described copy number variants (CNVs) of the human carboxyl-ester lipase (CEL) gene, including a recombined deletion allele (CEL-HYB) that is a genetic risk factor for chronic pancreatitis. Associations with pancreatic disease have also been reported for the variable number of tandem repeat (VNTR) region located in CEL exon 11. Here, we examined if CEL CNVs and VNTR length polymorphisms affect the risk for developing pancreatic cancer. METHODS: CEL CNVs and VNTR were genotyped in a German family with non-alcoholic chronic pancreatitis and pancreatic cancer, in 265 German and 197 Norwegian patients diagnosed with pancreatic adenocarcinoma, and in 882 controls. CNV screening was performed using PCR assays followed by agarose gel electrophoresis whereas VNTR lengths were determined by DNA fragment analysis. RESULTS: The investigated family was CEL-HYB-positive. However, an association of CEL-HYB or a duplication CEL allele with pancreatic cancer was not seen in our two patient cohorts. The frequency of the 23-repeat VNTR allele was borderline significant in Norwegian cases compared to controls (1.2% vs. 0.3%; P = 0.05). For all other VNTR lengths, no statistically significant difference in frequency was observed. Moreover, no association with pancreatic cancer was detected when CEL VNTR lengths were pooled into groups of short, normal or long alleles. CONCLUSIONS: We could not demonstrate an association between CEL CNVs and pancreatic cancer. An association is also unlikely for CEL VNTR lengths, although analyses in larger materials are necessary to completely exclude an effect of rare VNTR alleles.
A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs.
Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP.
Several well known microbial lipases were screened for their ability to hydrolyze synthetic medium chain monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). Fusarium solani cutinase and Thermomyces lanuginosus lipase (TLL) were found to hydrolyze MGDG at high rates (984 +/- 62 and 450 +/-41 U/mg, respectively). These activities remained however lower than those measured with pancreatic lipase-related protein 2 (PLRP2) on the same substrate. As previously observed with PLRP2, galactolipid-bile salt mixed micelles were found to be the best substrate form for microbial enzymes. The galactolipid to bile salt molar ratios for measuring maximum galactolipase activities were found to be similar to those previously established with PLRP2, suggesting that bile salts have mainly an effect on the substrate and not on the enzyme itself. The galactolipase activity of cutinase and TLL, as well as human and guinea pig PLRP2s were also measured using galactolipid monomolecular films. Enzymes having a lid (TLL and human PLRP2) were found to act at higher surface pressures than those with no lid (cutinase and guinea pig PLRP2). In silico docking of medium chain MGDG and DGDG in the active site of guinea pig PLRP2 and TLL reveals some structural analogies between these enzymes
BACKGROUND/AIMS: The variable number of tandem repeats (VNTR) in the last exon of the carboxyl-ester lipase (CEL) gene has been reported to associate with alcohol-induced chronic pancreatitis (ACP) in a Japanese study. Here, we have investigated the association between the number of CEL VNTR repeats and ACP or idiopathic chronic pancreatitis (ICP) in a cohort of German patients. METHODS: Patients diagnosed with ACP (n = 203) or ICP (n = 64) were genotyped using a screening method consisting of PCR followed by DNA fragment analysis. The allele frequencies of different CEL VNTR lengths were compared to the frequencies in healthy controls (n = 390). RESULTS: We observed no statistical significant associations between CEL VNTR allele frequencies and ACP or ICP. CONCLUSION: This study did not find evidence that supported an association between the common length variations of the CEL VNTR and chronic pancreatitis.
We report here the reactivity and selectivity of three 5-Methoxy-N-3-Phenyl substituted-1,3,4-Oxadiazol-2(3H)-ones (MPOX, as well as meta and para-PhenoxyPhenyl derivatives, i.e.MmPPOX and MpPPOX) with respect to the inhibition of mammalian digestive lipases: dog gastric lipase (DGL), human (HPL) and porcine (PPL) pancreatic lipases, human (HPLRP2) and guinea pig (GPLRP2) pancreatic lipase-related proteins 2, human pancreatic carboxyl ester hydrolase (hCEH), and porcine pancreatic extracts (PPE). All three oxadiazolones displayed similar inhibitory activities on DGL, PLRP2s and hCEH than the FDA-approved anti-obesity drug Orlistat towards the same enzymes. These compounds appeared however to be discriminative of HPL (poorly inhibited) and PPL (fully inhibited). The inhibitory activities obtained experimentally in vitro were further rationalized using in silico molecular docking. In the case of DGL, we demonstrated that the phenoxy group plays a key role in specific molecular interactions within the lipase's active site. The absence of this group in the case of MPOX, as well as its connectivity to the neighbouring aromatic ring in the case of MmPPOX and MpPPOX, strongly impacts the inhibitory efficiency of these oxadiazolones and leads to a significant gain in selectivity towards the lipases tested. The powerful inhibition of PPL, DGL, PLRP2s, hCEH and to a lesser extend HPL, suggests that oxadiazolone derivatives could also provide useful leads for the development of novel and more discriminative inhibitors of digestive lipases. These inhibitors could be used for a better understanding of individual lipase function as well as for drug development aiming at the regulation of the whole gastrointestinal lipolysis process.
CEL-maturity onset diabetes of the young (MODY), diabetes with pancreatic lipomatosis and exocrine dysfunction, is due to dominant frameshift mutations in the acinar cell carboxyl ester lipase gene (CEL). As Cel knock-out mice do not express the phenotype and the mutant protein has an altered and intrinsically disordered tandem repeat domain, we hypothesized that the disease mechanism might involve a negative effect of the mutant protein. In silico analysis showed that the pI of the tandem repeat was markedly increased from pH 3.3 in wild-type (WT) to 11.8 in mutant (MUT) human CEL. By stably overexpressing CEL-WT and CEL-MUT in HEK293 cells, we found similar glycosylation, ubiquitination, constitutive secretion, and quality control of the two proteins. The CEL-MUT protein demonstrated, however, a high propensity to form aggregates found intracellularly and extracellularly. Different physicochemical properties of the intrinsically disordered tandem repeat domains of WT and MUT proteins may contribute to different short and long range interactions with the globular core domain and other macromolecules, including cell membranes. Thus, we propose that CEL-MODY is a protein misfolding disease caused by a negative gain-of-function effect of the mutant proteins in pancreatic tissues.
We have previously shown that heterozygous single-base deletions in the carboxyl-ester lipase (CEL) gene cause exocrine and endocrine pancreatic dysfunction in two multigenerational families. These deletions were found in the first and fourth repeats of a variable number of tandem repeats (VNTR), which has proven challenging to sequence due to high GC-content and considerable length variation. We have therefore developed a screening method consisting of a multiplex PCR followed by fragment analysis. The method detected putative disease-causing insertions and deletions in the proximal repeats of the VNTR, and determined the VNTR-length of each allele. When blindly testing 56 members of the two families with known single-base deletions in the CEL VNTR, the method correctly assessed the mutation carriers. Screening of 241 probands from suspected maturity-onset diabetes of the young (MODY) families negative for mutations in known MODY genes (95 individuals from Denmark and 146 individuals from UK) revealed no deletions in the proximal repeats of the CEL VNTR. However, we found one Danish patient with a short, novel CEL allele containing only three VNTR repeats (normal range 7-23 in healthy controls). This allele co-segregated with diabetes or impaired glucose tolerance in the patient's family as six of seven mutation carriers were affected. We also identified individuals who had three copies of a complete CEL VNTR. In conclusion, the CEL gene is highly polymorphic, but mutations in CEL are likely to be a rare cause of monogenic diabetes.
BACKGROUND/AIMS: CEL-MODY is a monogenic form of diabetes and exocrine pancreatic insufficiency due to mutations in the carboxyl-ester lipase (CEL) gene. We aimed to investigate endocrine and exocrine pancreatic function in CEL knockout mice (CELKO). METHODS: A knockout mouse model with global targeted deletion of CEL was investigated physiologically and histopathologically, and compared to littermate control CEL+/+ mice at 7 and 12 months on normal chow and high-fat diets (HFD), i.e. 42 and 60% fat by calories. RESULTS: CELKO+/+ and -/- mice showed normal growth and development and normal glucose metabolism on a chow diet. Female CEL-/- mice on 60% HFD, on the other hand, had increased random blood glucose compared to littermate controls (p = 0.02), and this was accompanied by a reduction in glucose tolerance that did not reach statistical significance. In these mice there was also islet hyperplasia, however, alpha- and beta-islet cells appeared morphologically normal and pancreatic exocrine function was also normal. CONCLUSION: Although we observed mild glucose intolerance in female mice with whole-body knockout of CEL, the full phenotype of human CEL-MODY was not reproduced, suggesting that the pathogenic mechanisms involved are more complex than a simple loss of CEL function. and IAP.
OBJECTIVE: Exocrine pancreas dysfunction is seen in 10-30% of patients with type 1 and 2 diabetes. We have recently identified a syndrome of diabetes and exocrine pancreas dysfunction attributable to mutations in the carboxyl ester lipase (CEL) gene. We wanted to investigate the prevalence of pancreatic exocrine dysfunction in patients with maturity-onset diabetes of the young type 3 (MODY3). RESEARCH DESIGN AND METHODS: All 119 patients with MODY3 in the Norwegian MODY Registry were invited to participate, and 70 (60.5%) responded, among whom 63 were adults. Control groups included 140 subjects with type 1 diabetes and 78 nondiabetic control subjects. Pancreatic dysfunction was defined by fecal elastase deficiency. Fecal fat excretion was measured in 25 patients with fecal elastase deficiency. CEL was investigated for sequence changes. RESULTS: We found a prevalence of fecal elastase deficiency of 12.7% in adult patients with MODY3, compared with 18.6% in patients with type 1 diabetes and 3.8% in nondiabetic control subjects. The six patients with MODY3 with fecal elastase deficiency available for analysis all had increased fecal fat excretion. Fecal elastase decreased with age. Controlled for age, patients with MODY3 still had decreased fecal elastase compared with control subjects. Twelve of 70 patients (17%) had single-base insertions in CEL exon 11. Two of these had fecal elastase deficiency. CONCLUSIONS: The prevalence of pancreatic exocrine dysfunction was 12.7% in a cohort of 63 adult patients with MODY3, similar to the prevalence among type 1 diabetic patients. Fecal fat excretion was increased in all patients with MODY3 with fecal elastase deficiency who were investigated, underscoring the potential clinical importance of the exocrine dysfunction.
OBJECTIVE: To further define clinical features associated with the syndrome of diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl-ester lipase (CEL) gene and to assess the effects of pancreatic enzyme substitution therapy. RESEARCH DESIGN AND METHODS: Nine patients with CEL gene mutation, exocrine deficiency, and diabetes were treated and followed for 30 months. RESULTS: Treatment improved symptoms in seven of nine patients. Exocrine and endocrine function assessed by fecal elastase and A1C were not affected, although fecal lipid excretion was reduced. Vitamin E was low in all patients but increased with treatment (P < 0.001 at 30 months) and improved in five subjects. A predominantly demyelinating neuropathy was seen in a majority of patients, and carpal tunnel syndrome was common. CONCLUSIONS: Pancreatic enzyme substitution alleviated symptoms and malabsorption and normalized vitamin E levels. Glycemic control was not significantly affected. The CEL syndrome seems associated with a demyelinating neuropathology.
Dysfunction of the exocrine pancreas is observed in diabetes, but links between concurrent exocrine and endocrine pancreatic disease and contributing genetic factors are poorly characterized. We studied two families with diabetes and exocrine pancreatic dysfunction by genetic, physiological and in vitro functional studies. A genome-wide screen in Family 1 linked diabetes to chromosome 9q34 (maximal lod score 5.07). Using fecal elastase deficiency as a marker of exocrine pancreatic dysfunction refined the critical chromosomal region to 1.16 Mb (maximal lod score 11.6). Here, we identified a single-base deletion in the variable number of tandem repeats (VNTR)-containing exon 11 of the carboxyl ester lipase (CEL) gene, a major component of pancreatic juice and responsible for the duodenal hydrolysis of cholesterol esters. Screening subjects with maturity-onset diabetes of the young identified Family 2, with another single-base deletion in CEL and a similar phenotype with beta-cell failure and pancreatic exocrine disease. The in vitro catalytic activities of wild-type and mutant CEL protein were comparable. The mutant enzyme was, however, less stable and secreted at a lower rate. Furthermore, we found some evidence for an association between common insertions in the CEL VNTR and exocrine dysfunction in a group of 182 unrelated subjects with diabetes (odds ratio 4.2 (1.6, 11.5)). Our findings link diabetes to the disrupted function of a lipase in the pancreatic acinar cells.
OBJECTIVE: Bile salt-dependent lipase (BSDL), a lipolytic enzyme secreted in the duodenum by pancreatic acinar cells, has been detected in the serum of all patients and in atheromatous plaque, suggesting its potential implication in vascular pathophysiology. METHODS AND RESULTS: In vitro pancreatic BSDL evokes human umbilical vein endothelial cell (HUVEC) proliferation and chemotactic migration. BSDL at mitogen concentration is capable to heal wounded HUVEC monolayer and to promote capillary network formation. HUVEC proliferation depends on the displacement of basic fibroblast growth factor and vascular endothelial growth factor from the extracellular matrix and the activation of extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase, and focal adhesion kinase signaling pathways. CONCLUSIONS: For the first time to our knowledge, it is suggested that circulating BSDL could be involved in pathophysiological angiogenesis. We delineate the in vitro effects of pancreatic BSDL on endothelial cells, and we show that BSDL promotes proliferation, migration, capillary network formation, and wound-healing of HUVECs via the displacement of bFGF and VEGF from the ECM, suggesting that BSDL could be involved in angiogenesis.
The relationship between cholesterol and atherosclerosis has gained wide credence and red wine polyphenols have been shown to have an anti-atherogenic activity. In the present in vitro studies, we have evaluated and compared the effects of resveratrol, an active compound of red wine, and of a whole red wine polyphenolic extract (RWE) on the pancreatic bile salt-dependent lipase (BSDL). BSDL is involved in the duodenal hydrolysis of lipid esters and in part of cholesteryl esters thus favoring the bioavailability of free cholesterol. Resveratrol and RWE decrease the human and rat enzyme activities. Resveratrol and RWE also impaired the secretion of BSDL by the rat pancreatic AR4-2J cells used as secreting model. This effect is reversed by the removal of resveratrol or RWE from the cell culture medium. Further, resveratrol (but not RWE) affects the transcription of the gene encoding BSDL and dramatically diminishes the quantity of the enzyme that is expressed and secreted by AR4-2J cells. Results suggest that the hypolipemic effects of red wine polyphenols could partly originate from the inhibition of BSDL activity and secretion in the duodenum. In vivo, these effects could decrease the hydrolysis of dietary lipid esters and likely the absorption of free cholesterol.
Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.
        
Title: Lectin-like Ox-LDL receptor is expressed in human INT-407 intestinal cells: involvement in the transcytosis of pancreatic bile salt-dependent lipase Bruneau N, Richard S, Silvy F, Verine A, Lombardo D Ref: Mol Biology of the cell, 14:2861, 2003 : PubMed
We have recently shown that the pancreatic bile salt-dependent lipase (BSDL) can be taken up by intestinal cells and transported to the blood circulation. This mechanism likely involves (specific) receptor(s) able to bind BSDL and located at the apical intestinal cell membrane. In this study, using Int407 human intestinal cells cultured to form a tight epithelium, we attempted to characterize (the) BSDL receptor(s). We found that an apical 50-kDa protein was able to bind BSDL. Further, we have demonstrated that Int407 cells expressed the lectin-like oxidized-LDL receptor (LOX-1), the upregulation of which by oxidized-LDL potentiates the transcytosis of BSDL, whereas carrageenan and to a lesser extent polyinosinic acid and fucoidan decrease the enzyme transcytosis. The mAb JTX92, which blocks the LOX-1 receptor function, also impaired the BSDL transcytosis. To confirm these results, the cDNA encoding the human intestinal receptor LOX-1 has been cloned, inserted into vectors, and transfected into Int407 cells. Overexpression of LOX-1 by these cells leads to a substantial increase in the BSDL transcytosis. Globally, these data support the view that LOX-1 could be an intestinal receptor for BSDL, which is implicated in the transcytosis of this enzyme throughout Int407 cells.
        
Title: Human bile salt-stimulated lipase has a high frequency of size variation due to a hypervariable region in exon 11 Lindquist S, Blackberg L, Hernell O Ref: European Journal of Biochemistry, 269:759, 2002 : PubMed
The apparent molecular mass of human milk bile salt-stimulated lipase (BSSL) varies between mothers. The molecular basis for this is unknown, but indirect evidence has suggested the differences to reside in a region of repeats located in the C-terminal part of the protein. We here report that a polymorphism within exon 11 of the BSSL gene is the explanation for the molecular variants of BSSL found in milk. By Southern blot hybridization we analyzed the BSSL gene from mothers known to have BSSL of different molecular masses in their milk. A polymorphism was found within exon 11, previously shown to consist of 16 near identical repeats of 33 bp each. We detected deletions or, in one case, an insertion corresponding to the variation in molecular mass of the BSSL protein found in milk from the respective woman. Furthermore, we found that 56%, out of 295 individuals studied, carry deletions or insertions within exon 11 in one or both alleles of the BSSL gene. Hence, this is a hypervariable region and the current understanding that exon 11 in the human BSSL gene encodes 16 repeats is an oversimplification and needs to be revisited. Natural variation in the molecular mass of BSSL may have clinical implications.
        
Title: Transcytosis of pancreatic bile salt-dependent lipase through human Int407 intestinal cells Bruneau N, Nganga A, Bendayan M, Lombardo D Ref: Experimental Cell Research, 271:94, 2001 : PubMed
In previous studies, we have shown that the bile-salt-dependent-lipase (BSDL), secreted by pancreatic acinar cells and secreted into the duodenal lumen, can be transcytosed through intestinal cells up to the lamina propria. In this study, we used an in vitro system to provide insights into the apical to basolateral transport of BSDL, across the intestinal barrier. The Int407 human epithelial cell line, grown under conditions that optimize polarity, was used as a tight epithelium model. We attempted to delineate uptake mechanisms and the transcytotic pathway followed by this pancreatic enzyme within the intestinal Int407 cells, which do not produce BSDL. When added to the apical reservoir of Transwell-grown Int407 cells, BSDL was shown to first interact with the apical membrane. Further, BSDL forms clusters that are internalized via clathrin-coated pits. Following endocytosis, BSDL is directed to a nocodazole- and colchicin-sensitive multivesicular compartment. Interestingly, this protein transits through the Golgi apparatus, where it was found to colocalize with the KDEL retrieval-receptor. Finally, enzymatically active intact BSDL was released at the basolateral membrane level. This is the first demonstration for an apical-to-basolateral transcytotic pathway of a secreted pancreatic digestive enzyme through polarized intestinal cells.
        
Title: The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding Moore SA, Kingston RL, Loomes KM, Hernell O, Blackberg L, Baker HM, Baker EN Ref: Journal of Molecular Biology, 312:511, 2001 : PubMed
Human bile salt-stimulated lipase (BSSL), which is secreted from the pancreas into the digestive tract and from the lactating mammary gland into human milk, is important for the effective absorption of dietary lipids. The dependence of BSSL on bile acids for activity with water-insoluble substrates differentiates it from other lipases. We have determined the crystal structure of a truncated variant of human BSSL (residues 1-5.8) and refined it at 2.60 A resolution, to an R-factor of 0.238 and R(free) of 0.275. This variant lacks the C-terminal alpha-helix and tandem C-terminal repeat region of native BSSL, but retains full catalytic activity. A short loop (residues 115-126) capable of occluding the active-site (the active site loop) is highly mobile and exists in two conformations, the most predominant of which leaves the active-site open for interactions with substrate. The bile salt analogue 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid (CHAPS) was present in the crystallisation medium, but was not observed bound to the enzyme. However, the structure reveals a sulfonate group from the buffer piperizine ethane sulfonic acid (PIPES), making interactions with Arg63 and His115. His115 is part of the active-site loop, indicating that the loop could participate in the binding of a sulphate group from either the glycosaminoglycan heparin (known to bind BSSL) or a bile acid such as deoxycholate. Opening of the 115-126 active-site loop may be cooperatively linked to a sulphate anion binding at this site. The helix bundle domain of BSSL (residues 319-398) exhibits weak electron density and high temperature factors, indicating considerable structural mobility. This domain contains an unusual Asp:Glu pair buried in a hydrophobic pocket between helices alpha(H) and alpha(K) that may be functionally important. We have also solved the structure of full-length glycosylated human BSSL at 4.1 A resolution, using the refined coordinates of the truncated molecule as a search model. This structure reveals the position of the C-terminal helix, missing in the truncated variant, and also shows the active-site loop to be in a closed conformation.
        
Title: The affinity binding sites of pancreatic bile salt-dependent lipase in pancreatic and intestinal tissues Bruneau N, Lombardo D, Bendayan M Ref: Journal of Histochemistry & Cytochemistry, 48:267, 2000 : PubMed
In previous studies, we have shown that the bile salt-dependent lipase (BSDL) associates with the Grp94 molecular chaperone, an association that appears to play essential roles in the folding of BSDL. More recently, combined biochemical and immunocytochemical investigations were carried out to show that the transport of BSDL occurs via an association with the Grp94 all along the pancreatic secretory route (ER-Golgi-granules). The Grp94-BSDL complex is secreted with the pancreatic juice into the acinar lumen and reaches the duodenal lumen, where it is internalized by enterocytes. The dissociation of the complex could take place within the endosomal compartment because BSDL continues further on its way to the basolateral membrane of the enterocyte. To localize the affinity binding sites of pancreatic BSDL in pancreatic and duodenal tissues, we have used an affinity-gold ultrastructural technique. BSDL coupled to gold particles appears to interact with specific sites in tissue sections. This was confirmed by another indirect morphological approach using biotin-labeled BSDL and streptavidin-gold complexes on tissue sections. We have shown that BSDL associates with sites in the pancreatic secretory pathway compartments and in the microvilli, the endosomal compartment, and the basolateral membrane of enterocytes. By biochemical approaches, biotin-labeled BSDL displayed affinities with proteins of 180-190 kD in both pancreatic and duodenal tissues. We have also shown that the Grp94-BSDL complexes, which are insensitive to denaturing conditions, are present in pancreatic homogenate but not in duodenal lysate. Thus, BSDL is able to bind protein complexes formed by either BSDL-Grp94 or Grp94 dimers. (J Histochem Cytochem 48:267-276, 2000)
Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285).
        
Title: Structural characterization of the N-linked oligosaccharides in bile salt-stimulated lipase originated from human breast milk Mechref Y, Chen P, Novotny MV Ref: Glycobiology, 9:227, 1999 : PubMed
The detailed structures of N- glycans derived from bile salt-stimulated lipase (BSSL) found in human milk were determined by combining exoglycosidase digestion with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The N- glycan structures were conclusively determined in terms of complexity and degree of fucosylation. Ion-exchange chromatography with pulsed amperometric detection, together with mass-spectral analysis of the esterified N- glycans, indicated the presence of monosialylated structures. The molecular mass profile of esterified N- glycans present in BSSL further permitted the more detailed studies through collision-induced dissociation (CID) and sequential exoglycosidase cleavages. The N- glycan structures were elucidated to be complex/dibranched, fucosylated/complex/dibranched, monosialylated/complex/dibranched, and monosialylated/fucosylated/dibranched entities.
        
Title: Participation of GRP94-related protein in secretion of pancreatic bile salt-dependent lipase and in its internalization by the intestinal epithelium Bruneau N, Lombardo D, Bendayan M Ref: Journal of Cell Science, 111:2665, 1998 : PubMed
In previous studies on the AR4-2J cell line, we have shown that secretion of bile salt-dependent lipase (BSDL) involves a multiprotein complex, including a protein of 94 kDa (p94) that is immunologically related to the chaperone Grp94, which seems to play essential roles in the folding process of BSDL. Combined biochemical and immunocytochemical investigations were carried out to study the secretion of BSDL by normal pancreatic cells and its transport to the small intestine where this enzyme is thought to exert its physiological function. Both BSDL and Grp94 antigenic sites were localized and found to be associated all along the pancreatic acinar cell secretory pathway. Grp94 and BSDL remain associated from leaving the pancreas until arriving at the intestinal lumen. In pancreatic juice, both proteins appear as a complex of high molecular mass (180 kDa) containing at least one each of p94 and BSDL molecules, interacting by hydrophobic forces. At the intestinal level, associated Grp94 and BSDL were detected on microvilli and in the endosomal compartment of enterocytes. The BSDL mRNA, however, was not expressed by the intestinal mucosa. The pancreatic Grp94-BSDL complex was internalized through the endosomal compartment of enterocytes. Finally, the two proteins dissociated in this compartment and BSDL, but not Grp94, was transferred to the basolateral membrane.
        
Title: Lipid-lowering effects of WAY-121,898, an inhibitor of pancreatic cholesteryl ester hydrolase Krause BR, Sliskovic DR, Anderson M, Homan R Ref: Lipids, 33:489, 1998 : PubMed
WAY-121,898 is an inhibitor of pancreatic cholesteryl ester hydrolase (pCEH). After confirming its in vitro potency and relative lack of a major effect on acyl-CoA:cholesterol acyltransferase (ACAT), it was found that this compound lowers plasma cholesterol in cholesterol-fed, but not chow-fed, rats. Measures of liver cholesteryl ester content and the direct determination of cholesterol absorption (lymph-fistula model) show that inhibition of cholesterol absorption is at least one mechanism for the observed cholesterol lowering. However, WAY-121,898 was also active when administered parenterally to cholesterol-fed rats, and in cholesterol-fed hamsters cholesterol-lowering occurred with oral dosing despite no change in cholesterol absorption, suggesting other modes of action possibly relating to inhibition of liver CEH. Combination treatment in cholesterol-fed rats with the ACAT inhibitor CI-976 resulted in a greater-than-additive reduction in plasma cholesterol, implying that both pCEH and ACAT may play a role in cholesterol absorption in this species. In rabbits, WAY-121,898 prevented the rise in plasma cholesterol due to the feeding of cholesteryl ester but not in rabbits fed (free) cholesterol. In guinea pigs, the compound induced an increase in adrenal cholesteryl ester mass. Taken together, the overall profile in these animal models suggests that WAY-121,898 inhibits more than just the intestinal (lumenal) pCEH, and that the role of this enzyme in cholesterol metabolism may be different within and across species, the former depending upon the dietary cholesterol load.
        
Title: An intracellular role for pancreatic bile salt-dependent lipase: evidence for modification of lipid turnover in transfected CHO cells Le Petit-Thevenin J, Bruneau N, Nobili O, Lombardo D, Verine A Ref: Biochimica & Biophysica Acta, 1393:307, 1998 : PubMed
Pancreatic bile salt-dependent lipase (BSDL) hydrolyzes cholesteryl esters, triglycerides and phospholipids. BSDL is also capable of transferring free fatty acid to cholesterol. BSDL has been detected in many cells including fetal and tumor cells, hepatocytes, macrophages and eosinophils and in tissues such as adrenal glands and testes. The enzyme may be secreted or located within subcellular compartments such as the endoplasmic reticulum or the cytosol. Although the role of the secreted enzyme is well documented, that of the intracellular form(s) is still hypothetical. In the present study, we addressed the effects of BSDL on cell lipid metabolism. For that purpose, the cDNA of rat BSDL was transfected into CHO K1 cells (CHO K1-BSDL clone) which were then loaded with [3H]oleic acid. The results demonstrate that the transfected BSDL is secreted; in spite of that, a large fraction of catalytically active BSDL is found in cell lysate. The lipid metabolism of transfected cells is affected and BSDL induces an enhanced incorporation of [3H]oleic acid in cholesteryl esters whereas fatty acid incorporation in phosphatidylcholine is decreased. These effects were particularly important in the cytosol of transfected cells where transfected BSDL preferentially locates. These data suggested that BSDL could be implicated in the cycle of the cellular homeostasis of cholesterol which is particularly affected in tumoral cells leading to cholesteryl ester storage within cytosolic lipid droplets.
Specific transcripts for bile salt-dependent lipase (BSDL), a 100-kDa glycoprotein secreted by the human pancreas, were immunodetected in BxPC-3 and SOJ-6 pancreatic tumoral cell lines. Sequencing of fragments, obtained by mRNA reverse transcription and amplification, confirmed the presence of BSDL transcripts in these cancer cells. The protein was detected in lysates of pancreatic tumoral cells, where it was mainly associated with membranes. Only a minute amount of the enzyme was detected in the culture media. Immunofluorescence studies demonstrated that in SOJ-6 cells, BSDL colocates with the p58 Golgi protein and suggested that the protein may be sequestrated within the Golgi compartment. These results demonstrated that BSDL is expressed in human pancreatic tumoral cells and cannot be secreted (or for the least very poorly). Subsequently, a cDNA covering the entire sequence of BSDL was obtained by reverse transcription-polymerase chain reaction. The sequence of this cDNA indicated that the N-terminal domain encoded by exons 1-10 was identical to that of BSDL expressed by the human normal pancreas. However, the sequence corresponding to exon 11, which should code for the 16 tandem-repeated identical mucin-like sequences of BSDL, was deleted by 330 base pairs (bp) and encoded only 6 of these repeated sequences. We conclude that this truncated variant of BSDL would be its oncofetal form, referred to as feto-acinar pancreatic protein. We then investigated whether the deletion of 330 bp affected the secretion of the protein. For this purpose, the cDNA corresponding to the mature form of the BSDL variant expressed in SOJ-6 cells was cloned into an expression/secretion vector and transfected into CHO-K1 cells. Results indicated that the variant of BSDL isolated from SOJ-6 cells was expressed and secreted by transfected cells. However, the level of BSDL secreted by these transfected CHO-K1 cells was significantly higher than that observed for SOJ-6 cells. Consequently, the retention of the oncofetal variant of BSDL observed in human pancreatic tumoral cells might not result from inherent properties of the protein.
        
Title: Purification of carboxyl ester lipase (bile salt-stimulated lipase) from human milk and pancreas Blackberg L, Duan RD, Sternby B Ref: Methods Enzymol, 284:185, 1997 : PubMed
Title: O-Glycosylation of C-terminal tandem-repeated sequences regulates the secretion of rat pancreatic bile salt-dependent lipase Bruneau N, Nganga A, Fisher EA, Lombardo D Ref: Journal of Biological Chemistry, 272:27353, 1997 : PubMed
Amino acid sequences rich in Pro, Glu, Ser, and Thr (PEST) are common to rapidly degraded proteins (Rogers, S., Wells, R. & Rechsteiner, M. (1986) Science 234, 364-368). On pancreatic bile salt-dependent lipase (BSDL), PEST sequences are present in the C-terminal region of the enzyme to which is associated the O-glycosylation. We have postulated that the O-glycosylation of BSDL may contribute to mask PEST sequences and to trigger the secretion of this enzyme instead of its delivery into a degradative pathway (Bruneau, N., and Lombardo, D. (1995) J. Biol. Chem. 270, 13524-13523). To further examine the role of the O-linked glycosylation on BSDL metabolism, rat pancreatic BSDL cDNA was stably transfected into two Chinese hamster ovary (CHO) cell lines, the CHO K1 wild-type line and the O-glycosylation defective CHO ldlD line. In these latter cells, O-glycosylation can be reversibly modulated by culture conditions. Results indicate that the rate of BSDL synthesis by transfected CHO K1 or CHO ldlD cells reflects, independently of culture conditions, the amount of mRNA specific for BSDL present in these transfected cells. Nevertheless, the rate of secretion of the enzyme depends upon cell culture conditions and increases with the cell capability to O-glycosylate C-terminal tandem-repeated sequences. Immunoprecipitation experiments performed on cell lysates suggested that a rapid degradation of BSDL occurred particularly when transfected CHO ldlD cells were cultured under non-permissive conditions. We further showed that BSDL secreted by CHO ldlD cells grown under non-permissive conditions that normally prevent O-glycosylation incorporated galactose and was reactive with peanut agglutinin, which recognizes the core structure of O-linked glycans. We concluded that the BSDL expressed by CHO ldlD cells grown under non-permissive conditions was rapidly degraded but a fraction of the enzyme was allowed to O-glycosylate and consequently was secreted.
        
Title: Established and Emerging Strategies for Inhibition of Cholesterol Absorption Homan R, Krause BR Ref: Curr.Pharma.Design, 3:29, 1997 : PubMed
The growing evidence linking elevated plasma cholesterol levels, to increased risk of heart disease and the demonstration of a positive correelation between plasma levels of low density lipoprotein cholesterol and cholesterol absorption efficiency in humans have been a major impetus for efforts to develo cholesterol absorption inhibitors. Not only do such agents act on a major component of the total cholesterol turnover within the body, but, since they are directed at a cholesterol pool that is external to the circulation (i.e. intestinal lumen), there is potential Fot the development of efficacious compounds that function non-systemically and thereby avoid the toxicity issues associated with agents that must enter the circulation to act. The potential for such agents is already evident from the clinical experience with neomycin and beta-sitosterol which have yielded moderate success in the treatment of hypcrcholestetolemic patients. The creation of more efficacious compounds is focused on the development of inhibitors of specific enzymes considered to facilitate the cholesterol absorption process and on non-specific agents that enhance cholesterol retention within the intestinal contents by perturbing cholesterol distribution and exchange among the various lipid phases of the contents. In addition, a new method for blocking cholesterol uptake is proprosed that is based on ihe inhibition of pancreatic phospholipase A2
        
Title: Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues Hui DY Ref: Biochimica & Biophysica Acta, 1303:1996, 1996 : PubMed
Title: Chaperone function of a Grp 94-related protein for folding and transport of the pancreatic bile salt-dependent lipase Bruneau N, Lombardo D Ref: Journal of Biological Chemistry, 270:13524, 1995 : PubMed
In its fundamental attributes, the secretion pathway of the pancreatic bile salt-dependent lipase (BSDL) followed that described for all enzymes involved in regulated secretion. This route was inhibited by drugs that affect protein synthesis and intracellular transport. In the presence of monensin, BSDL was solely detected in microsome membrane fractions. The association of BSDL with intracellular membranes involved a protein complex, formed by at least two proteins of 94 and 56 kDa. In cells experiencing the metabolic stress due to azetidine-2-carboxylic acid, BSDL was additionally associated with a protein of 46 kDa. Affinity blotting showed that BSDL bound directly to the 94-kDa protein (p94). It was suggested that p94 could be a molecular chaperone, further identified as related to the 94-kDa glucose regulated protein (Grp 94). The membrane-associated BSDL (i.e. BSDL bound to the Grp 94-related p94) was O- and N-glycosylated and consequently appeared released from membranes in the trans-Golgi compartment. Therefore and for the first time, it is suggested that a multiprotein complex including the chaperone Grp 94-related p94 protein may play an essential role in the folding and transport of BSDL. One hypothesis is that the association of BSDL with membrane via the Grp 94-related p94 along its secretion pathway is required for its complete O-glycosylation, which occurs on the extended mucin-like structures present on the C-terminal part of the protein.
Glycosylation positions and oligosaccharide characteristics in the proline-rich, mucin-like, C-terminal region (C-tail) of human milk bile salt-activated lipase (BAL) were studied in order to assess the possible physiological functions of this region. A large-scale purification method has been devised to purify the C-tail fragment from human milk BAL. Chymotryptic, tryptic, and cyanogen bromide cleavages of partially purified BAL and subsequent molecular sieve chromatography yielded 20-30 mg of C-tail fragment from 1 L of human milk. The N-terminal sequence and amino acid composition of the purified C-tail fragment establish that it is derived from residues 528-712 of the enzyme. The O-glycosylated carbohydrates of the C-tail fragment contain fucose, galactose, glucosamine, galactosamine, and neuraminic acid in a molar ratio of 1:3:2:1:0.3, respectively. beta-Elimination reaction revealed that nine threonine residues and less than one serine residue were glycosylated. Edman degradation of C-tail fragment and its pronase subfragment suggest a number of glycosylation sites which are flanked by a consensus motif of PVPP. We suggest that this motif may serve as a signal for O-glycosylation in the C-tail region of BAL. Immunochemical studies indicated that the oligosaccharide chains in the C-tail region of BAL contain Lewis x and Lewis a antigens and, less prominently, sialyl Lewis x and sialyl Lewis a antigens. C-tail fragment was also found to bind jacalin lectin. These observations suggest the possibility that the C-tail region may contribute to adhesive activity in the physiological function of BAL.
Bile salt-dependent lipase (BSDL), an enzyme normally found in human pancreatic secretions is a 100 kDa glycoprotein. A BSDL-specific 477 bp cDNA probe was prepared by performing polymerase chain reaction experiments. This cDNA was used to probe mRNAs extracted from human pancreatic tissue and tumoral cell lines. Two mRNAs were detected in normal human pancreas at 2.2 and 1.3 to 1.5 kb. In human pancreatic tumoral cells, mRNAs encoding for the BSDL were detected using in situ hybridization, and proteins with an M(r) of 46,000 to 48,000 were translated into an in vitro system using mRNAs extracted from these cells. Using an immunoprecipitation procedure, we observed here that the specific BSDL polyclonal antibodies recognized three proteins of 100 +/- 5 (p100), 46 +/- 2 (p46) and 22.7 +/- 1.2 (p23) kDa, respectively in the soluble extracts of normal adult human pancreas. The p100 protein was probably the glycosylated product resulting from the translation of the 2.2 kb transcript. The p46 protein, which electrophoresed as a doublet was the main component immunoprecipitated from extract of a differentiated human pancreatic adenocarcinoma as well as from the extracts of two pancreatic cell lines, BxPC-3 and SOJ-6. In addition, the p46 immunoform of the BSDL was detected in cell-free medium from SOJ-6 cell line and its expression was found to be correlated with the secretion of an esterolytic activity on 4-nitrophenyl caproate, whereas the BxPC-3 cell line neither secreted the p46 nor showed any esterolytic activity on this substrate. The p46 may be either a short variant of BSDL resulting from the translation of the 1.3 to 1.5 kb transcript or a protein structurally related to the enzyme. The p46 doublet immunoform was detected in the human pancreatic secretion.
        
Title: Bile salt-stimulated lipase in human milk. Evidence that bile salt induces lipid binding and activation via binding to different sites Blackberg L, Hernell O Ref: FEBS Letters, 323:207, 1993 : PubMed
Human milk bile salt-stimulated lipase ensures efficient triacylglycerol utilization in breast-fed newborns. For activity against long-chain triacylglycerol, primary bile salts are a prerequisite. Bile salts also protect the enzyme from inactivation by intestinal proteases. We have studied the effect of different bile salts on activation, protease protection, lipid binding, and enzyme inactivation, caused by an arginine modifying agent. Based on the results we propose a model involving two bile salt binding sites; one activation-site specific for primary bile salt, and another, less specific, lipid binding promoting site at which also secondary bile salt binds. Binding to this latter site induces binding of enzyme to emulsified substrates but binding promoting site at which also secondary bile salt binds. Binding to this latter site induces binding of enzyme to emulsified substrates but without subsequent lipolysis.
A fetoacinar pancreatic protein (FAP) associated with the ontogenesis, differentiation and oncogenic transformation of the human exocrine pancreas has been purified from pancreatic juices of patients suffering from pancreatitis or duodenal cancers invading the pancreas [Escribano and Imperial (1989) J. Biol. Chem. 264, 21865-21871]. This protein has striking similarities, i.e. M(r), amino acid composition and N-terminal sequence, to the bile-salt-dependent lipase (BSDL) of normal human pancreatic secretion. The aim of this study was to gain further insight into the nature of the two proteins. Reactivity with the mouse monoclonal antibody J28 (mAb J28), which characterizes FAP, and enzyme activity could not be dissociated during biochemical purification of BSDL. Furthermore, a polyclonal antiserum raised against purified human BSDL reacted completely with FAP in Western-blot analysis giving additional support to the idea of similar molecular structures for BSDL and FAP. However, by the same technique, mAb J28 reacted with a relatively restricted population of BSDL molecules. The classical BSDL preparation could be separated into molecules bearing the J28 epitope and those devoid of it by immunoaffinity on immobilized mAb J28. The two subpopulations had identical N-terminal sequences and some differences in their amino acid compositions. However, they had different carbohydrate compositions. J28-epitope-bearing molecules were active on BSDL substrates, although their specific activity was decreased. These results are consistent with the existence of two closely related polypeptide chains with different glycan counterparts. Therefore, if the name FAP is reserved for molecules bearing the J28 epitope, which is linked to a carbohydrate-dependent structure. FAP could represent an oncofetal-related variant of BSDL. Our result is the first demonstration of the existence of an oncofetal-type subpopulation of an otherwise normally secreted human pancreatic enzyme.
        
Title: The human carboxyl ester lipase-like (CELL) gene is ubiquitously expressed and contains a hypervariable region Nilsson J, Hellquist M, Bjursell G Ref: Genomics, 17:416, 1993 : PubMed
In this paper we characterize the human carboxyl ester lipase-like (CELL) transcript. An analysis of the tissue distribution of the expression of the gene shows that it is expressed in low amounts in all tissues analyzed. This is in contrast to its closely related and functional gene, the carboxyl ester lipase (CEL) gene, which is expressed only in human lactating mammary gland and pancreas. The primary structure of the cDNA encoding the carboxyl ester lipase-like transcript has been determined. The average length of the cDNA is 1214 bases. This sequence includes several termination codons in all three reading frames. The longest open reading frame with the same start of translation as that of the CEL transcript could encode a 59-amino-acid-long peptide, presumably without any function. The CELL gene may have arisen as a result of a gene duplication of the CEL gene followed by deletions and point mutations. However, the mutations are unevenly distributed. In the first three exons no mutations are found compared to the corresponding exons of the CEL gene. On the other hand, in the next exon several point mutations and a 2-base insertion are found and are present in all individuals analyzed. A hypervariable region present in the last exon of the CELL gene is also characterized. Several allelic variants can be resolved by polymerase chain reaction amplification of this region followed by sequencing using an automated laser fluorescent sequencer.
        
Title: Bile salt-activated lipase. A multiple function lipolytic enzyme Wang CS, Hartsuck JA Ref: Biochimica & Biophysica Acta, 1166:1, 1993 : PubMed
The gene for human pancreatic cholesterol esterase consists of 11 exons and 10 introns and is 9.2 kb in length. The last and longest exon (841 nucleotides) is unique to the human gene. Functional amino acids are encoded on separate exons. The leader sequence is encoded by a single exon which carries two additional N-terminal amino acids of the mature functional protein. A positive TATA element is identified 43 nucleotides from the start codon. Pulse-field gel electrophoresis and hybridization with various cDNA probes and direct sequence data revealed the existence of a CEase-like gene. Partial sequence analysis of this gene from a human cosmid library and human genomic DNA showed a premature stop signal in exon 10, shortly after the codon for the active-site histidine. Both the functional gene and the CEase-like gene have a polyadenylation signal in the 3'-untranslated region. Thus, the complex gene structure for this intestinally active enzyme may provide in part a potential molecular explanation for the well-known heterogeneity of the intestinal absorption of cholesterol.
The gene encoding human carboxyl ester lipase (CEL), including 1628 bp of the 5'-flanking region, has been isolated and characterized from two overlapping lambda phage clones. The gene spans 9832 bp and contains 11 exons interrupted by 10 introns. The exons range in size from 88 to 204 bp, except for the last exon, which is 841 bp. A major and a minor transcription initiation site were determined 13 and 7 bp, respectively, upstream of the initiator methionine. The nucleotide sequence is identical with that of the previously reported cDNA, except for the third nucleotide in the 5'-untranslated sequence, a C, which in the cDNA is a T. A TAAATA sequence is present 26 nt upstream from the major CAP site, and within the 5'-flanking region there are several putative transcription factor binding sites. Seven Alu repetitive sequence elements are present in the region analyzed. The organization of the human CEL gene is similar to that of the recently reported rat pancreatic cholesterol esterase gene. The CEL gene was assigned to chromosome 9q34-qter, which confirms the recently reported results of Tayler et al. (1991, Genomics 10: 425-431). A previously unknown gene with a striking homology to the human CEL gene, here called the CEL-like gene (CELL), has also been isolated and characterized, including 1724 bp of the 5'-flanking region. The CELL gene, which most likely is a psuedogene, spans 4846 bp, and due to the absence of a 4.8-kb segment, the CEL gene exons 2-7 are not present in the CELL gene. Despite these differences, the CELL gene is transcribed. We have also assigned the CELL gene to a separate locus at chromosome 9q34-qter.
The structure and some functional sites of human milk bile salt activated lipase (BAL) were studied by cDNA cloning and chemical analysis of the enzyme. Eighteen cDNA clones of human BAL were identified from lactating human breast cDNA libraries in lambda gt11 and lambda gt10 with antibody and synthetic oligonucleotides as probes. The sequence of four clones was sufficient to construct a 3018-bp BAL cDNA structure. This sequence codes for an open reading frame of 742 amino acid residues. There is a putative signal sequence of 20 residues which is followed by the amino-terminal sequence of BAL, and the mature BAL contains 722 amino acid residues. The cDNA sequence also contains a 678-base 5'-untranslated sequence, a 97-base 3'-untranslated region, and a 14-base poly(A) tail. The sequence of a 1.8-kbp insert of clone G10-4A differs from that of the other cDNA in that it contains a deletion of 198 bases (1966-2163) corresponding to 66 amino acid residues. By use of BAL cDNA as probe, it was found that the major molecular species of BAL mRNA in human mammary gland HBL-100 cells had a size of 2.9 kb and two minor species had sizes of 3.8 and 5.1 kb by Northern blot analyses. The deduced BAL protein structure contains in the carboxyl-terminal region 16 repeating units of 11 amino acids each. The repeating units have the basic structure Pro-Val-Pro-Pro-Thr-Gly-Asp-Ser-Gly-Ala-Pro with only minor substitutions. The amino acid sequence of human BAL is related to that of pancreatic lysophospholipase, cholesterol esterase, cholinesterase, acetylcholinesterase, and thyroglobulin. Ten of the 14 cyanogen bromide fragments of diisopropyl fluorophosphate inhibited human milk BAL were isolated, determined for N-terminal sequences, analyzed for amino sugars, and tested for some functional properties. These chemical studies established that the active site of human milk BAL is located at serine-194, the N-glycosylation site is present at asparagine-187, the O-glycosylation region is in the 16 repeating units near the C-terminus, and the heparin binding domain is in the N-terminal region. We have also determined the location of disulfide bridges as Cys64-Cys80 and Cys246-Cys257. The cyanogen bromide cleavage and the partial sequencing of CNBr peptides also confirmed the location of methionines in the polypeptide chain as well as the deduced cDNA sequence of BAL.
        
Title: Human milk bile-salt stimulated lipase. Sequence similarity with rat lysophospholipase and homology with the active site region of cholinesterases Christie DL, Cleverly DR, O'Connor CJ Ref: FEBS Letters, 278:190, 1991 : PubMed
To determine the active site residue, human milk bile-salt stimulated lipase (BSSL) was labelled with [3H]diisopropyl fluorophosphate (DFP). Partial sequence analysis of cyanogen bromide fragments (a total of 146 residues from 6 peptides) revealed 84% sequence identity with a putative rat lysophospholipase. Sequence analysis of a [3H]DFP-labelled peptide indicated that the active site serine was contained in the sequence Gly-Glu-Ser-Ala-Gly. In addition to similarity with rat lysophospholipase, this sequence showed homology with regions of human butyrylcholinesterase and electric ray acetylcholinesterase (68% identity). It is concluded that these proteins are members of a new supergene family.
We report the isolation and nucleotide sequence of the cDNA for carboxyl ester lipase (CEL) from human pancreas. CEL was purified from human pancreas and microsequence analysis was performed on the amino-terminal and internal peptides. Peptide sequence was used to design oligonucleotide probes for screening a human pancreas cDNA library. Partial length cDNAs for CEL were isolated from the library, and the 5' portion of the cDNA was obtained using the anchored polymerase chain reaction. The deduced amino acid sequence indicates that mature CEL contains 722 amino acids and is synthesized with a 20 amino acid leader peptide. The amino acid sequence is rich in proline (12.2%), with 68% of the proline residues occurring within the final 25% of protein length. This is due to the occurrence of a series of proline-rich tandem repeat units near the carboxyl terminus, and accounts for the previously observed species variation in CEL size and amino acid composition. The primary sequence of CEL shows strong similarity to members of the serine esterase family, including the identical G-E-S-A-G motif at the putative active site. A striking homology also occurs between CEL and acetylcholinesterase and cholinesterase, essential enzymes of the nervous system. Proteins with cholesteryl esterase activity have been detected in extra-pancreatic tissues including liver, intestine, kidney, aorta, macrophage, and in the milk of some species (human, gorilla, cat, dog), but not others (rat, cow). To clarify the structural relationships between these various esterases and CEL, we used the CEL cDNA to study expression in pancreas and liver. CEL mRNA was abundant in pancreas of human and rat, with the human CEL mRNA approximately 300 nucleotides larger than that from rat. CEL mRNA was not detected in human adult or fetal liver, nor in rat liver. These results indicate that CEL is not synthesized in significant amounts in liver, and suggest that the cholesterol esterase activity that has been described in liver may be due to a distinct enzyme, or may be derived from pancreas, as has been proposed for the cholesterol esterase activity in intestine.
Carboxyl ester lipase (CEL) is a major component of pancreatic juice and is responsible for the hydrolysis of cholesterol esters as well as a variety of other dietary esters. As part of an effort to elucidate the role of this enzyme in the genetic control of lipid metabolism, we report here the chromosomal mapping of the gene for CEL to the most distal part of the long arm of human chromosome 9 using analysis of mouse-human somatic cell hybrids and in situ hybridization to chromosomes. A chromosome 9 translocation was utilized to determine the position of the CEL gene relative to various genetic markers previously localized to this region. Finally, we report that the CEL locus exhibits a high degree of polymorphism and contains a hypervariable region of the insertion/deletion variety.
        
Title: Sequence identity between human pancreatic cholesterol esterase and bile salt-stimulated milk lipase Hui DY, Kissel JA Ref: FEBS Letters, 276:131, 1990 : PubMed
Three overlapping cDNA clones covering the entire primary sequence of the bile salt stimulated lipase in human milk were isolated from a human breast lambda gt10 cDNA library by screening with the rat pancreatic cholesterol esterase cDNA. Nucleotide sequencing of the cDNA showed that the human milk lipase mRNA encodes a 748-residue protein, including a 23-residue signal peptide. The human milk lipase cDNA is highly homologous to rat pancreatic cholesterol esterase, suggesting that the milk lipase may be identical to the cholesterol esterase in human pancreas. This conclusion was confirmed by isolation and sequencing of the cDNA for human pancreatic cholesterol esterase. Analysis of the sequence for the human cholesterol esterase/milk lipase revealed similarities to other serine esterases in three distinct regions of the protein. These domains may represent the active site triads of these proteins.
        
Title: cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase Nilsson J, Blackberg L, Carlsson P, Enerback S, Hernell O, Bjursell G Ref: European Journal of Biochemistry, 192:543, 1990 : PubMed
We have isolated and sequenced cDNA clones covering the entire coding sequence of human-milk bile-salt-stimulated lipase, as well as 996 nucleotides of the 3' end of the pancreatic enzyme carboxylic ester hydrolase. The deduced amino acid sequence of the lipase starts with a 23-residue leader peptide. The open reading frame continues with 722 amino acid residues. The sequence contains in the C-terminal part a proline-rich repeat, 16 repeats of 11 amino acid residues each. The mRNA was estimated to be approximately 2500 nucleotides from Northern blot and of similar size in mammary and pancreatic tissues. Data obtained indicate that the lipase and the carboxylesterase are identical and coded for by the same gene. The cDNA is 2428 bases long, which indicates that a near full-length copy of the transcript has been isolated. Comparisons with other enzymes show that the lipase is a new member of the supergene family of serine hydrolases. It is not only closely related (and in its N-terminal half virtually identical) to lysophospholipase from rat pancreas and cholesterol esterase from bovine pancreas, but also shows a high degree of similarity to several esterases, e.g. acetylcholine esterase. In contrast, no such similarity could be found to typical lipases.