(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > sordariomyceta: NE > Sordariomycetes: NE > Hypocreomycetidae: NE > Hypocreales: NE > Nectriaceae: NE > Fusarium: NE > Fusarium oxysporum species complex: NE > Fusarium oxysporum: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Fusarium oxysporum f. sp. lycopersici: N, E.
Fusarium oxysporum f. sp. cubense: N, E.
Fusarium oxysporum f. sp. vasinfectum 25433: N, E.
Fusarium oxysporum FOSC 3-a: N, E.
Fusarium oxysporum f. sp. pisi HDV247: N, E.
Fusarium oxysporum f. sp. conglutinans race 2 54008: N, E.
Fusarium oxysporum f. sp. cubense tropical race 4 54006: N, E.
Fusarium oxysporum f. sp. raphani 54005: N, E.
Fusarium oxysporum Fo47: N, E.
Fusarium oxysporum f. sp. melonis 26406: N, E.
Fusarium oxysporum f. sp. radicis-lycopersici 26381: N, E.
Fusarium oxysporum f. sp. radicis-cucumerinum: N, E.
Fusarium oxysporum f. sp. cubense race 1: N, E.
Fusarium oxysporum f. sp. lycopersici 4287: N, E.
Fusarium oxysporum f. sp. lycopersici MN25: N, E.
Fusarium oxysporum Fo5176: N, E.
Fusarium oxysporum f. sp. cubense race 4: N, E.
Fusarium oxysporum f. sp. narcissi: N, E.
Fusarium oxysporum NRRL 32931: N, E.
Fusarium oxysporum f. sp. cepae: N, E.
Fusarium proliferatum ET1: N, E.
Fusarium fujikuroi IMI 58289: N, E.
Gibberella fujikuroi: N, E.
Fusarium fujikuroi: N, E.
Fusarium mangiferae: N, E.
Fusarium verticillioides 7600: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA SMDTSTDICLPQDNMRPTFLLFSGLGACAAAGKGDDFAAKCAGFKTSLKL PNTKVWFTEHVPAGKNITFPDNHPTCTPKSTITDVEICRVAMFVTTGPKS NLTLEAWLPSNWTGRFLSTGNGGMAGCIQYDDVAYGAGFGFATVGANNGH NGTSAVSMYKNSGVVEDYVYRSVHTGTVLGKELTKKFYGKKHTKSYYLGC STGGRQGWKEAQSFPDDFDGIVAGAPAMRFNGLQSRSGSFWGITGPPGAP THLSPEEWAMVQKNVLVQCDEPLDGVADGILEDPNLCQYRPEALVCSKGQ TKNCLTGPQIETVRKVFGPLYGNNGTYIYPRIPPGADQGFGFAIGEQPFP YSTEWFQYVIWNDTKWDPNTIGPNDYQKASEVNPFNVETWEGDLSKFRKR GSKIIHWHGLEDGLISSDNSMEYYNHVSATMGLSNTELDEFYRYFRVSGC GHCSGGIGANRIGNNRANLGGKEAKNNVLLALVKWVEEGQAPETITGVRY VNGATTGKVEVERRHCRYPYRNVWDRKGNYKNPDSWKCELPLEQKLISEE DLNSAVD
References
7 moreTitle: Crystal structure of the Fusarium oxysporum tannase-like feruloyl esterase FaeC in complex with p-coumaric acid provides insight into ligand binding Ferousi C, Kosinas C, Nikolaivits E, Topakas E, Dimarogona M Ref: FEBS Letters, 597:1415, 2023 : PubMed
Feruloyl esterases (FAEs) hydrolyze the ester bonds between hydroxycinnamic acids and arabinose residues of plant cell walls and exhibit considerable diversity in terms of substrate specificity. Here, we report the crystal structure of an FAE from Fusarium oxysporum (FoFaeC) at 1.7 A resolution in complex with p-coumaric acid, which is the first ligand-bound structure of a tannase-like FAE. Our data reveal local conformational changes around the active site upon ligand binding, suggesting alternation between an active and a resting state of the enzyme. A swinging tyrosine residue appears to be gating the substrate binding pocket, while the lid domain of the protein exerts substrate specificity by means of a well-defined hydrophobic core that encases the phenyl moiety of the substrate.
Feruloyl esterases are enzymes of industrial interest that catalyse the hydrolysis of the ester bond between hydroxycinnamic acids such as ferulic acid and sugars present in the plant cell wall. Although there are several structures of biochemically characterized feruloyl esterases available, the structural determinants of their substrate specificity are not yet fully understood. Here, we present the crystal structure of a feruloyl esterase from Fusarium oxysporum (FoFaeC) at 2.3 A resolution. Similar to the two other tannase-like feruloyl esterases, FoFaeC features a large lid domain covering the active site with potential regulatory role and a disulphide bond that brings together the serine and histidine of the catalytic triad. Differences are mainly observed in the metal coordination site and the substrate binding pocket. ENZYMES: E.C.3.1.1.73. DATABASES: The sequence of FoFaeC has been deposited with UniProt with accession code A0A1D3S5H0_FUSOX and the atomic coordinates of the three-dimensional structure with Protein Data Bank, with PDB code: 6FAT.
The need to develop competitive and eco-friendly processes in the cosmetic industry leads to the search for new enzymes with improved properties for industrial bioconversions in this sector. In the present study, a complete methodology to generate, express and screen diversity for the type C feruloyl esterase from Fusarium oxysporium FoFaeC was set up in a high-throughput fashion. A library of around 30,000 random mutants of FoFaeC was generated by error prone PCR of fofaec cDNA and expressed in Yarrowia lipolytica. Screening for enzymatic activity towards the substrates 5-bromo-4-chloroindol-3-yl and 4-nitrocatechol-1-yl ferulates allowed the selection of 96 enzyme variants endowed with improved enzymatic activity that were then characterized for thermo- and solvent- tolerance. The five best mutants in terms of higher activity, thermo- and solvent- tolerance were selected for analysis of substrate specificity. Variant L432I was shown to be able to hydrolyze all the tested substrates, except methyl sinapate, with higher activity than wild type FoFaeC towards methyl p-coumarate, methyl ferulate and methyl caffeate. Moreover, the E455D variant was found to maintain completely its hydrolytic activity after two hour incubation at 55 degrees C, whereas the L284Q/V405I variant showed both higher thermo- and solvent- tolerance than wild type FoFaeC. Small molecule docking simulations were applied to the five novel selected variants in order to examine the binding pattern of substrates used for enzyme characterization of wild type FoFaeC and the evolved variants.
        
7 lessTitle: Crystal structure of the Fusarium oxysporum tannase-like feruloyl esterase FaeC in complex with p-coumaric acid provides insight into ligand binding Ferousi C, Kosinas C, Nikolaivits E, Topakas E, Dimarogona M Ref: FEBS Letters, 597:1415, 2023 : PubMed
Feruloyl esterases (FAEs) hydrolyze the ester bonds between hydroxycinnamic acids and arabinose residues of plant cell walls and exhibit considerable diversity in terms of substrate specificity. Here, we report the crystal structure of an FAE from Fusarium oxysporum (FoFaeC) at 1.7 A resolution in complex with p-coumaric acid, which is the first ligand-bound structure of a tannase-like FAE. Our data reveal local conformational changes around the active site upon ligand binding, suggesting alternation between an active and a resting state of the enzyme. A swinging tyrosine residue appears to be gating the substrate binding pocket, while the lid domain of the protein exerts substrate specificity by means of a well-defined hydrophobic core that encases the phenyl moiety of the substrate.
Feruloyl esterases are enzymes of industrial interest that catalyse the hydrolysis of the ester bond between hydroxycinnamic acids such as ferulic acid and sugars present in the plant cell wall. Although there are several structures of biochemically characterized feruloyl esterases available, the structural determinants of their substrate specificity are not yet fully understood. Here, we present the crystal structure of a feruloyl esterase from Fusarium oxysporum (FoFaeC) at 2.3 A resolution. Similar to the two other tannase-like feruloyl esterases, FoFaeC features a large lid domain covering the active site with potential regulatory role and a disulphide bond that brings together the serine and histidine of the catalytic triad. Differences are mainly observed in the metal coordination site and the substrate binding pocket. ENZYMES: E.C.3.1.1.73. DATABASES: The sequence of FoFaeC has been deposited with UniProt with accession code A0A1D3S5H0_FUSOX and the atomic coordinates of the three-dimensional structure with Protein Data Bank, with PDB code: 6FAT.
The need to develop competitive and eco-friendly processes in the cosmetic industry leads to the search for new enzymes with improved properties for industrial bioconversions in this sector. In the present study, a complete methodology to generate, express and screen diversity for the type C feruloyl esterase from Fusarium oxysporium FoFaeC was set up in a high-throughput fashion. A library of around 30,000 random mutants of FoFaeC was generated by error prone PCR of fofaec cDNA and expressed in Yarrowia lipolytica. Screening for enzymatic activity towards the substrates 5-bromo-4-chloroindol-3-yl and 4-nitrocatechol-1-yl ferulates allowed the selection of 96 enzyme variants endowed with improved enzymatic activity that were then characterized for thermo- and solvent- tolerance. The five best mutants in terms of higher activity, thermo- and solvent- tolerance were selected for analysis of substrate specificity. Variant L432I was shown to be able to hydrolyze all the tested substrates, except methyl sinapate, with higher activity than wild type FoFaeC towards methyl p-coumarate, methyl ferulate and methyl caffeate. Moreover, the E455D variant was found to maintain completely its hydrolytic activity after two hour incubation at 55 degrees C, whereas the L284Q/V405I variant showed both higher thermo- and solvent- tolerance than wild type FoFaeC. Small molecule docking simulations were applied to the five novel selected variants in order to examine the binding pattern of substrates used for enzyme characterization of wild type FoFaeC and the evolved variants.
The type C feruloyl esterase FoFaeC from Fusarium oxysporum is a newly discovered enzyme with high potential for use in the hydrolysis of lignocellulosic biomass but it shows low activity towards sinapates. In this work, small molecule docking simulations were employed in order to identify important residues for the binding of the four model methyl esters of hydroxycinnamic acids, methyl ferulate/caffeate/sinapate/p-coumarate, to the predicted structure of FoFaeC. Subsequently rational redesign was applied to the enzyme' active site in order to improve its specificity towards methyl sinapate. A double mutation (F230H/T202V) was considered to provide hydrophobic environment for stabilization of the methoxy substitution on sinapate and a larger binding pocket. Five mutant clones and the wild type were produced in Pichia pastoris and biochemically characterized. All clones showed improved activity, substrate affinity, catalytic efficiency and turnover rate compared to the wild type against methyl sinapate, with clone P13 showing a 5-fold improvement in catalytic efficiency. Although the affinity of all mutant clones was improved against the four model substrates, the catalytic efficiency and turnover rate decreased for the substrates containing a hydroxyl substitution.
        
Title: Genome Sequence of Fusarium oxysporum f. sp. melonis Strain NRRL 26406, a Fungus Causing Wilt Disease on Melon Ma LJ, Shea T, Young S, Zeng Q, Kistler HC Ref: Genome Announc, 2:, 2014 : PubMed
Horizontal chromosome transfer introduces host-specific pathogenicity among members of the Fusarium oxysporum species complex and is responsible for some of the most destructive and intractable plant diseases. This paper reports the genome sequence of F. oxysporum f. sp. melonis (NRRL 26406), a causal agent of Fusarium wilt disease on melon.
The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.
        
Title: A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis Thatcher LF, Gardiner DM, Kazan K, Manners JM Ref: Mol Plant Microbe Interact, 25:180, 2012 : PubMed
Secreted-in-xylem (SIX) proteins of the vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici are secreted during infection of tomato and function in virulence or avirulence. F. oxysporum formae speciales have specific host ranges but the roles of SIX proteins in diverse hosts are unknown. We identified homologs of F. oxysporum f. sp. lycopersici SIX1, SIX4, SIX8, and SIX9 in the genome of Arabidopsis infecting isolate Fo5176. A SIX4 homolog (termed Fo5176-SIX4) differed from that of F. oxysporum f. sp. lycopersici (Fol-SIX4) by only two amino acids, and its expression was induced during infection of Arabidopsis. Transgenic Arabidopsis plants constitutively expressing Fo5176-SIX4 had increased disease symptoms with Fo5176. Conversely, Fo5176-SIX4 gene knock-out mutants (Deltasix4) had significantly reduced virulence on Arabidopsis, and this was associated with reduced fungal biomass and host jasmonate-mediated gene expression, the latter known to be essential for host symptom development. Full virulence was restored by complementation of Deltasix4 mutants with either Fo5176-SIX4 or Fol-SIX4. Thus, Fo5176-SIX4 contributes quantitatively to virulence on Arabidopsis whereas, in tomato, Fol-SIX4 acts in host specificity as both an avirulence protein and a suppressor of other race-specific resistances. The strong sequence conservation for SIX4 in F. oxysporum f. sp. lycopersici and Fo5176 suggests a recent common origin.
Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
        
Title: Cloning, characterization and functional expression of an alkalitolerant type C feruloyl esterase from Fusarium oxysporum Moukouli M, Topakas E, Christakopoulos P Ref: Applied Microbiology & Biotechnology, 79:245, 2008 : PubMed
A hypothetical protein FoFaeC-12213 of Fusarium oxysporum was found to have high amino acid sequence identity with known type C feruloyl esterases (FAEs) containing a 13-amino acid conserved region flanking the characteristic G-X-S-X-G motif of a serine esterase. The putative FAE from the genomic DNA was successfully cloned in frame with the Saccharomyces cerevisiae alpha-factor secretion signal under the transcriptional control of the alcohol oxidase (AOX1) promoter and integrated in Pichia pastoris X-33 to confirm that the enzyme exhibits FAE activity. The molecular weight (62 kDa) and pI (6.8) were in agreement with the theoretical calculated values indicating the correct processing of the secretion signal in P. pastoris. The recombinant FAE was purified to its homogeneity and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme is a type C FAE showing broad hydrolytic activity against the four methyl esters of hydroxycinnamic acids and strong preference for the hydrolysis of n-propyl ferulate. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with xylanase from Trichoderma longibrachiatum (a maximum of 67% total FA released after 1-h incubation). The esterase showed broad pH stability making it an important candidate for alkaline applications such as pulp treatment in the paper industry.
        
Title: Purification and characterization of a feruloyl esterase from Fusarium oxysporum catalyzing esterification of phenolic acids in ternary water-organic solvent mixtures Topakas E, Stamatis H, Biely P, Kekos D, Macris BJ, Christakopoulos P Ref: J Biotechnol, 102:33, 2003 : PubMed
An extracellular feruloyl esterase (FAE-II) from the culture filtrates of Fusarium oxysporum F3 was purified to homogeneity by SP-Sepharose, t-butyl-HIC and Sephacryl S-200 column chromatography. The protein corresponded to molecular mass and pI values of 27 kDa and 9.9, respectively. The enzyme was optimally active at pH 7 and 45 degrees C. The purified esterase was fully stable at pH 7.0-9.0 and temperature up to 45 degrees C after 1 h incubation. Determination of k(cat)/K(m) revealed that the enzyme hydrolysed methyl sinapinate 6, 21 and 40 times more efficiently than methyl ferulate, methyl coumarate and methyl caffeate, respectively. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 but inactive to the C-2 positions of arabinofuranose such as 4-nitrophenyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and 4-nitrophenyl 2-O-trans-feruloyl-alpha-L-arabinofuranoside. In the presence of Sporotrichum thermophile xylanase, there was a significant release of ferulic acid from destarched wheat bran by FAE-II, indicating a synergistic interaction between FAE-II and S. thermophile xylanase. FAE-II by itself could release only little ferulic acid from destarched wheat bran. The potential of FAE-II for the synthesis of various phenolic acid esters was tested using as a reaction system a surfactantless microemulsion formed in ternary mixture consisting of n-hexane, 1-propanol and water.