(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > Eurotiomycetes: NE > Eurotiomycetidae: NE > Eurotiales: NE > Aspergillaceae: NE > Aspergillus: NE > Aspergillus nidulans: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Aspergillus nidulans FGSC A4: N, E.
Aspergillus nidulans: N, E.
Molecular evidence
Database
No mutation 1 structure: 6GUO: Emericella nidulans (Aspergillus nidulans) siderophore-degrading esterase AnEstA No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MTHWAFSPIQPGAARNMAAWQIAGKKDGPYQIDVSWPLTWSESGDASGKS ANAVYLVDGNALFLTATETLRRRESHRPSETGTVVIAIGYPITDSVFSPR RSYDLTPPCDHYIPPEGPDGSPKPEAHGGADEFLTFIAEIVRPFVELKVF PRVSFGRTALFGHSYGGLFALHALFTKPSSFDVYLAASPSIWWNNRSILT EARRFISGAALFSSAHPVLRLSFGSREQYPVRQRVESDEMFKRRQRAAEQ RRMNDNCEELYSELLASGRLCKLEVKEYLDEDHGSVIGPALSGGIMFLSN LSA
References
Title: Iron Scavenging in Aspergillus Species: Structural and Biochemical Insights into Fungal Siderophore Esterases Ecker F, Haas H, Groll M, Huber EM Ref: Angew Chem Int Ed Engl, 57:14624, 2018 : PubMed
Fungi utilize high-affinity chelators termed siderophores with chemically diverse structures to scavenge the essential nutrient iron from their surroundings. Since they are among the strongest known Fe(3+) binding agents, intracellular release of the heavy metal atom is facilitated by the activity of specific hydrolases. In this work, we report the characterization and X-ray crystal structures of four siderophore esterases: AfEstB and AfSidJ from Aspergillus fumigatus, as well as AnEstB and AnEstA from Aspergillus nidulans. Even though they all display the conserved alpha/beta-hydrolase fold, we found significant structural and enzymatic discrepancies in their adaption to both related and chemically diverse substrates. A structure of AfEstB in complex with its substrate triacetylfusarinine C gives insight into the active enzyme and shows tetrahedral coordination between the catalytic serine and the scissile ester bond.
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.
The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation.