(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Platyhelminthes: NE > Rhabditophora: NE > Seriata: NE > Tricladida: NE > Continenticola: NE > Geoplanoidea: NE > Dugesiidae: NE > Dugesia: NE > Dugesia japonica: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MITFICVLLLSICASTPYPLSPTYTPSVQTKIGTVNGFIKTVEWNDRSAT TVHIYYGIPYALSPIENRRFKKPYPYKGTPNQTINATTHKPSCHQYNDTS YTNTAGARMWLSQIPFDEDCLYLNIWVPQIPAPDVYKINQKTNEKLAVMV WIYGGSFASGAAGLEVYEGRYLAARQNVIVVSMNYRLGPFGFLYLHGSEI LGNMGLWDQRLALKWVKENIEFFGGDPDRITLFGESAGAVSVSAHVISPW SQNLFRNAIMESGSVLGYWGIISKKDSDLRTKKFVEKMGCKGSISHQVQC LRQATAKRLTDNHAIIYDMSSYFSVTFPPVLDNNFFPYQSLKQLVHLKPT GALMFGMNKNEGSYFMLYSFLNDSEFRNNITEIHIPNQSDYENKLRKVLD LDNKTTKHILSLVDFEYTDFNLPDTSQYRVMRLEEMSSDRSFKCPTIEMA KLVTNDNRFEKGIGKRTVTLPTYFYEFRYRTKSLPWPDWMGTIHGLEIDY VFGVPFNKHFEKLFYNFTDEERRISDAVMQYWANFARNDDPNIMPNDKLI SDNDISISGKSLRIWPEFDNSTQSYLIINDDGNIKISNNPKKRKCLFWRR WYPILLKEANQRKCRS
The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 microM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.
        
Title: Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation Hagstrom D, Hirokawa H, Zhang L, Radic Z, Taylor P, Collins ES Ref: Archives of Toxicology, 91:2837, 2016 : PubMed
The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.
Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models.
The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 microM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.
        
Title: Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation Hagstrom D, Hirokawa H, Zhang L, Radic Z, Taylor P, Collins ES Ref: Archives of Toxicology, 91:2837, 2016 : PubMed
The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.
        
Title: Planarian brain regeneration as a model system for developmental neurotoxicology Hagstrom D, Cochet-Escartin O, Collins ES Ref: Regeneration (Oxf), 3:65, 2016 : PubMed
Freshwater planarians, famous for their regenerative prowess, have long been recognized as a valuable in vivo animal model to study the effects of chemical exposure. In this review, we summarize the current techniques and tools used in the literature to assess toxicity in the planarian system. We focus on the planarian's particular amenability for neurotoxicology and neuroregeneration studies, owing to the planarian's unique ability to regenerate a centralized nervous system. Zooming in from the organismal to the molecular level, we show that planarians offer a repertoire of morphological and behavioral readouts while also being amenable to mechanistic studies of compound toxicity. Finally, we discuss the open challenges and opportunities for planarian brain regeneration to become an important model system for modern toxicology.
Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models.