(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Protostomia: NE > Ecdysozoa: NE > Panarthropoda: NE > Arthropoda: NE > Mandibulata: NE > Pancrustacea: NE > Hexapoda: NE > Insecta: NE > Dicondylia: NE > Pterygota: NE > Neoptera: NE > Holometabola: NE > Diptera: NE > Brachycera: NE > Muscomorpha: NE > Eremoneura: NE > Cyclorrhapha: NE > Schizophora: NE > Acalyptratae: NE > Ephydroidea: NE > Drosophilidae: NE > Drosophilinae: NE > Drosophilini: NE > Drosophila [fruit fly, genus]: NE > Sophophora: NE > melanogaster group: NE > melanogaster subgroup: NE > Drosophila melanogaster: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MMHKLKYRDKLKWLLALLVLIGTCFIQTRGQTRDPRFYSRPGVDYHWPNP GDPDYRTYTFNDRRYGHYQPNGYGANYPGRNPPGQYPQGMPNEDRFRFDP NDPNARTQFPGVLAGWREDLQGKQRRDSLTLERDVFVTTNYGQVQGFKVY MYDNPDPKSFYRPYHSTVDRVMGECSVFLGIPYALPPTFEGRFKPPRVHR GWQLLQAVDFGPACPQPVRYTGATKGIMDMDEDCLYLNVYSPKTGAGVAQ KYPVMVYIHGGEFIRGASNLFQGHILASFYDVVVVTLNYRLGALGFLSTG DENSPGNYGILDQAMALRWVYDNIEFFNGDRNSITLFGPGAGGASAGLLM VAPQTRNIVRRVIAQSGSALADWALIQDKYRAQNTSRVLGQLLGCSIESS WKLVNCLRTGRSFYELGNAEFSPQVGSFPWGPVLDHNFTLPGDDWYEGWR EKDWRFLTKTPETLIRAGKFNRNIQYMTGVTTQEAAFFVAQNESLSPYYE LDGRFFDQKIREHVFRYNYTLNPNGVYEAIKYMYTFWPDPNNNTIIRDQY INMLSDLYYRAPVDQMVKLMLEQKVPVYMYVLNTTVEALNLPQWRKYPHD IERYFLTGAPFMDTEFFPKKEHLQRNMWTDNDRNMSHFFMQTYTNFARYG NPTPQQVLGMHFQRAYQGEIRYLNINTTYNSSILLNYRQTECAFWTQYLP TVIGVLVPTYPPTTEYWWEPKEPLQIAFWSMSVACFFLIVLVVICCIMWR NAKRQSDRFYDEDVFINGEGLEPEQDTRGVDNAHMVTNHHALRSRDNIYE YRDSPSTKTLASKAHTDTTSLRSPSSLAMTQKSSSQASLKSGISLKETNG HLVKQSERAATPRSQQNGSIAKVASPPVEEKRLLQPLSSTPVTQLQAEPA KRVPTAASVSGSSRSTTPVPSARSTTTHTTTATLSSQPAAQPRRTHLVEG VPQTSV
References
4 moreTitle: Overexpressed Gliotactin activates BMP signaling through interfering with the Tkv-Dad association Sharifkhodaei Z, Auld VJ Ref: Genome, :1, 2020 : PubMed
Epithelial junctions ensure cell-cell adhesion and establish permeability barriers between cells. At the corners of epithelia, the tricellular junction (TCJ) is formed by three adjacent epithelial cells and generates a functional barrier. In Drosophila, a key TCJ protein is Gliotactin (Gli) where loss of Gli disrupts barrier formation and function. Conversely, overexpressed Gli spreads away from the TCJ and triggers apoptosis, delamination, and cell migration. Thus, Gli protein levels are tightly regulated and by two mechanisms, at the protein levels by tyrosine phosphorylation and endocytosis and at the mRNA level through microRNA-184. Regulation of Gli mRNA is mediated through a Gli-BMP-miR184 feedback loop. Excessive Gli triggers BMP signaling pathway through the activation of Tkv type-I BMP receptor and Mad. Elevated level of pMad induces micrRNA-184 expression which in turn targets the Gli 3'UTR and mRNA degradation. Gli activation of Tkv is not through its ligand Dpp but rather through the inhibition of Dad, an inhibitory-Smad. Here, we show that ectopic expression of Gli interferes with Tkv-Dad association by sequestering Dad away from Tkv. The reduced inhibitory effect of Dad on Tkv results in the increased Tkv-pMad signaling activity, and this effect is continuous through larval and pupal wing formation.
Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at theDrosophilatricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3'UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184.
BACKGROUND: The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions. RESULTS: Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp. CONCLUSIONS: The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis.
        
4 lessTitle: Overexpressed Gliotactin activates BMP signaling through interfering with the Tkv-Dad association Sharifkhodaei Z, Auld VJ Ref: Genome, :1, 2020 : PubMed
Epithelial junctions ensure cell-cell adhesion and establish permeability barriers between cells. At the corners of epithelia, the tricellular junction (TCJ) is formed by three adjacent epithelial cells and generates a functional barrier. In Drosophila, a key TCJ protein is Gliotactin (Gli) where loss of Gli disrupts barrier formation and function. Conversely, overexpressed Gli spreads away from the TCJ and triggers apoptosis, delamination, and cell migration. Thus, Gli protein levels are tightly regulated and by two mechanisms, at the protein levels by tyrosine phosphorylation and endocytosis and at the mRNA level through microRNA-184. Regulation of Gli mRNA is mediated through a Gli-BMP-miR184 feedback loop. Excessive Gli triggers BMP signaling pathway through the activation of Tkv type-I BMP receptor and Mad. Elevated level of pMad induces micrRNA-184 expression which in turn targets the Gli 3'UTR and mRNA degradation. Gli activation of Tkv is not through its ligand Dpp but rather through the inhibition of Dad, an inhibitory-Smad. Here, we show that ectopic expression of Gli interferes with Tkv-Dad association by sequestering Dad away from Tkv. The reduced inhibitory effect of Dad on Tkv results in the increased Tkv-pMad signaling activity, and this effect is continuous through larval and pupal wing formation.
Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at theDrosophilatricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3'UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184.
BACKGROUND: The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions. RESULTS: Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp. CONCLUSIONS: The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis.
BACKGROUND: Transposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species. RESULTS: We identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes. CONCLUSIONS: This analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses.
BACKGROUND: The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences. RESULTS: Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes. CONCLUSIONS: Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
        
Title: Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila Auld VJ, Fetter RD, Broadie K, Goodman CS Ref: Cell, 81:757, 1995 : PubMed
Peripheral glia help ensure that motor and sensory axons are bathed in the appropriate ionic and biochemical environment. In Drosophila, peripheral glia help shield these axons against the high K+ concentration of the hemolymph, which would largely abolish their excitability. Here, we describe the molecular genetic analysis of gliotactin, a novel transmembrane protein that is transiently expressed on peripheral glia and that is required for the formation of the peripheral blood-nerve barrier. In gliotactin mutant embryos, the peripheral glia develop normally in many respects, except that ultrastructurally and physiologically they do not form a complete blood-nerve barrier. As a result, peripheral motor axons are exposed to the high K+ hemolymph, action potentials fail to propagate, and the embryos are nearly paralyzed.