Culex pipiens acetylcholinesterase (Northern house mosquito) Culex quinquefasciatus (Southern house mosquito) (Culex pungens)(ache1 gene)
Comment
This gene is duplicated independently in many strains Labb et al. AJ489456 is mRNA of the strain SLAB and AJ515147 is for the resistant G119S SR strain. genbank accession numbers AJ512688 to AJ512717 are partial sequences of different strain of the Culex pipiens complex (C.pip.pip. and C.pip.quinq) Partial sequence from this gene found in 14 other mosquitos Aedes albopictus (Forest day mosquito) AJ438598 Anopheles albimanus (New world malaria mosquito) AJ438608 Anopheles arabiensis (Mosquito) AJ438603 Anopheles darlingi AJ438599Anopheles funestus AJ438604 Anopheles minimus AJ438601 Anopheles moucheti AJ438602 Anopheles nili AJ438609 Anopheles pseudopunctipennis AJ438605 Anopheles sacharovi AJ438606 Anopheles stephensi (Indo-Pakistan malaria mosquito) AJ438607Anopheles sundaicus AJ438600 and ACES_CULP; Culex pipiens pipiens (Northern house mosquito) NCBI_TaxID 38569 ACES_CULQU Q867X2; Q867X1; Q867X4 Q1WKR8 Culex quinquefasciatus (Southern house mosquito).;ACES_CULTO Q86GC9 Culex torrentium (Mosquito) NCBI_TaxID=42433 Culex pipiens pallens Q5XL61_CULPI acetylcholinesterase (EC 3.1.1.7) by Li et al. 2004 identical except for a 9 aa deletion in N-term In Culex quinquefasciatus Q1WKR8 is for Gongdi-S Q1WKR9 is for Gongdi-R The G119S mutation
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Protostomia: NE > Ecdysozoa: NE > Panarthropoda: NE > Arthropoda: NE > Mandibulata: NE > Pancrustacea: NE > Hexapoda: NE > Insecta: NE > Dicondylia: NE > Pterygota: NE > Neoptera: NE > Holometabola: NE > Diptera: NE > Nematocera: NE > Culicomorpha: NE > Culicoidea: NE > Culicidae: NE > Culicinae: NE > Culicini: NE > Culex [genus]: NE > Culex [subgenus]: NE > Culex pipiens complex: NE > Culex pipiens: NE
ACHE : culpi-ACHE2Culex pipiens (House mosquito) Culex pipiens pipiens (Northern house mosquito) acetylcholinesterase partial. Carb_B_Arthropoda : culpi-1esteCulex pipiens gene for esterase B1, culpi-ESTACulex pipiens (House mosquito) Culex pipiens pipiens (Northern house mosquito) Culex quinquefasciatus (Southern house mosquito) (Culex pungens) Culex pipiens complex sp. Culex pipiens pallens Est-3 (coding esterase A)
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Culex pipiens molestus: N, E.
Culex pipiens pallens: N, E.
Culex pipiens pipiens: N, E.
Culex quinquefasciatus: N, E.
Culex quinquefasciatus quinquefasciatus: N, E.
A264T : A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus A328S : Point Mutations Associated with Organophosphate and Carbamate Resistance in Chinese Strains of Culex pipiens quinquefasciatus (Diptera: Culicidae) A391T : Point Mutations Associated with Organophosphate and Carbamate Resistance in Chinese Strains of Culex pipiens quinquefasciatus (Diptera: Culicidae) F416V : A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus G119S : Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus T682A : Point Mutations Associated with Organophosphate and Carbamate Resistance in Chinese Strains of Culex pipiens quinquefasciatus (Diptera: Culicidae) V185M : Point Mutations Associated with Organophosphate and Carbamate Resistance in Chinese Strains of Culex pipiens quinquefasciatus (Diptera: Culicidae)
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MEIRGLITRLLGPCHLRHLILCSLGLYSILVQSVHCRHHDIGSSVAHQLG SKYSQSSSLSSSSQSSSSLAEEATLNKDSDAFFTPYIGHGDSVRIVDAEL GTLEREHIHSTTTRRRGLTRRESSSDATDSDPLVITTDKGKIRGTTLEAP SGKKVDAWMGIPYAQPPLGPLRFRHPRPAERWTGVLNATKPPNSCVQIVD TVFGDFPGATMWNPNTPLSEDCLYINVVVPRPRPKNAAVMLWIFGGGFYS GTATLDVYDHRTLASEENVIVVSLQYRVASLGFLFLGTPEAPGNAGLFDQ NLALRWVRDNIHRFGGDPSRVTLFGESAGAVSVSLHLLSALSRDLFQRAI LQSGSPTAPWALVSREEATLRALRLAEAVNCPHDATKLSDAVECLRTKDP NELVDNEWGTLGICEFPFVPVVDGAFLDETPQRSLASGRFKKTDILTGSN TEEGYYFIIYYLTELLRKEEGVTVTREEFLQAVRELNPYVNGAARQAIVF EYTDWIEPDNPNSNRDALDKMVGDYHFTCNVNEFAQRYAEEGNNVFMYLY THRSKGNPWPRWTGVMHGDEINYVFGEPLNSALGYQDDEKDFSRKIMRYW SNFAKTGNPNPSTPSVDLPEWPKHTAHGRHYLELGLNTTFVGRGPRLRQC AFWKKYLPQLVAATSNLQVTPAPSVPCESSSTSYRSTLLLIVTLLLVTRF KI
Gene duplications occur at a high rate. Although most appear detrimental, some homogeneous duplications (identical gene copies) can be selected for beneficial increase in produced proteins. Heterogeneous duplications, which combine divergent alleles of a single locus, are seldom studied due to the paucity of empirical data. We investigated their role in an ongoing adaptive process at the ace-1 locus in Culex pipiens mosquitoes. We assessed the worldwide diversity of the ace-1 alleles (single-copy, susceptible S and insecticide-resistant R, and duplicated D that pair one S and one R copy), analysed their phylogeography and measured their fitness to understand their early dynamics using population genetics models. It provides a coherent and comprehensive evolutionary scenario. We show that D alleles are present in most resistant populations and display a higher diversity than R alleles (27 vs. 4). Most appear to result from independent unequal crossing-overs between local single-copy alleles, suggesting a recurrent process. Most duplicated alleles have a limited geographic distribution, probably resulting from their homozygous sublethality (HS phenotype). In addition, heterozygotes carrying different HS D alleles showed complementation, indicating different recessive lethal mutations. Due to mosaic insecticide control practices, balancing selection (overdominance) plays a key role in the early dynamics of heterogeneous duplicated alleles; it also favours a high local polymorphism of HS D alleles in natural populations (overdominance reinforced by complementation). Overall, our study shows that the evolutionary fate of heterogeneous duplications (and their long-term role) depends on finely balanced selective pressures due to the environment and to their genomic structure.
        
Title: Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon Osta MA, Rizk ZJ, Labbe P, Weill M, Knio K Ref: Parasit Vectors, 5:132, 2012 : PubMed
BACKGROUND: Analysis of Culex pipiens mosquitoes collected from a single site in Lebanon in 2005, revealed an alarming frequency of ace-1 alleles conferring resistance to organophosphate insecticides. Following this, in 2006 the majority of municipalities switched to pyrethroids after a long history of organophosphate usage in the country; however, since then no studies have assessed the impact of changing insecticide class on the frequency of resistant ace-1 alleles in C. pipiens. METHODS: C. pipiens mosquitoes were captured indoors from 25 villages across the country and subjected to established methods for the analysis of gene amplification at the Ester locus and target site mutations in ace-1 gene that confer resistance to organophosphates. RESULTS: We conducted the first large-scale screen for resistance to organosphosphates in C. pipiens mosquitoes collected from Lebanon. The frequency of carboxylesterase (Ester) and ace-1 alleles conferring resistance to organophosphates were assessed among C. pipiens mosquitoes collected from 25 different villages across the country between December 2008 and December 2009. Established enzymatic assay and PCR-based molecular tests, both diagnostic of the major target site mutations in ace-1 revealed the absence of the F290V mutation among sampled mosquitoes and significant reduction in the frequency of G119S mutation compared to that previously reported for mosquitoes collected from Beirut in 2005. We also identified a new duplicated ace-1 allele, named ace-1D13, exhibiting a resistant phenotype by associating a susceptible and a resistant copy of ace-1 in a mosquito line sampled from Beirut in 2005. Fisher's exact test on ace-1 frequencies in the new sample sites, showed that some populations exhibited a significant excess of heterozygotes, suggesting that the duplicated allele is still present. Starch gel electrophoresis indicated that resistance at the Ester locus was mainly attributed to the Ester2 allele, which exhibits a broad geographical distribution. CONCLUSIONS: Our analysis suggests that the frequency of resistant ace-1 alleles in mosquito populations can be downshifted, and in certain cases (F290V mutation) even eliminated, by switching to a different class of insecticides, possibly because of the fitness cost associated with these alleles.
Gene duplication is thought to be the main potential source of material for the evolution of new gene functions. Several models have been proposed for the evolution of new functions through duplication, most based on ancient events (Myr). We provide molecular evidence for the occurrence of several (at least 3) independent duplications of the ace-1 locus in the mosquito Culex pipiens, selected in response to insecticide pressure that probably occurred very recently (<40 years ago). This locus encodes the main target of several insecticides, the acetylcholinesterase. The duplications described consist of 2 alleles of ace-1, 1 susceptible and 1 resistant to insecticide, located on the same chromosome. These events were detected in different parts of the world and probably resulted from distinct mechanisms. We propose that duplications were selected because they reduce the fitness cost associated with the resistant ace-1 allele through the generation of persistent, advantageous heterozygosis. The rate of duplication of ace-1 in C. pipiens is probably underestimated, but seems to be rather high.
Gene duplications occur at a high rate. Although most appear detrimental, some homogeneous duplications (identical gene copies) can be selected for beneficial increase in produced proteins. Heterogeneous duplications, which combine divergent alleles of a single locus, are seldom studied due to the paucity of empirical data. We investigated their role in an ongoing adaptive process at the ace-1 locus in Culex pipiens mosquitoes. We assessed the worldwide diversity of the ace-1 alleles (single-copy, susceptible S and insecticide-resistant R, and duplicated D that pair one S and one R copy), analysed their phylogeography and measured their fitness to understand their early dynamics using population genetics models. It provides a coherent and comprehensive evolutionary scenario. We show that D alleles are present in most resistant populations and display a higher diversity than R alleles (27 vs. 4). Most appear to result from independent unequal crossing-overs between local single-copy alleles, suggesting a recurrent process. Most duplicated alleles have a limited geographic distribution, probably resulting from their homozygous sublethality (HS phenotype). In addition, heterozygotes carrying different HS D alleles showed complementation, indicating different recessive lethal mutations. Due to mosaic insecticide control practices, balancing selection (overdominance) plays a key role in the early dynamics of heterogeneous duplicated alleles; it also favours a high local polymorphism of HS D alleles in natural populations (overdominance reinforced by complementation). Overall, our study shows that the evolutionary fate of heterogeneous duplications (and their long-term role) depends on finely balanced selective pressures due to the environment and to their genomic structure.
Acetylcholinesterase resistance has been well documented in many insects, including several mosquito species. We tested the resistance of five wild, Chinese strains of the mosquito Culex pipiens quinquefasciatus to two kinds of pesticides, dichlorvos and propoxur. An acetylcholinesterase gene (ace1) was cloned and sequenced from a pooled sample of mosquitoes from these five strains and the amino acids of five positions were found to vary (V185M, G247S, A328S, A391T, and T682A). Analysis of the correlation between mutation frequencies and resistance levels (LC50) suggests that two point mutations, G247S (r2 = 0.732, P = 0.065) and A328S (r2 = 0.891, P = 0.016), are associated with resistance to propoxur but not to dichlorvos. Although the V185M mutation was not associated with either dichlorvos or propoxur resistance, its RS genotype frequency was correlated with propoxur resistance (r2 = 0.815, P = 0.036). And the HWE test showed the A328S mutation is linked with V185M, also with G247S mutation. This suggested that these three mutations may contribute synergistically to propoxur resistance. The T682A mutation was negatively correlated with propoxur (r2 = 0.788, P = 0.045) resistance. Knowledge of these mutations may help design strategies for managing pesticide resistance in wild mosquito populations.
        
Title: Susceptibility status of Culex quinquefasciatus (Diptera: Culicidae) populations to the chemical insecticide temephos in Pernambuco, Brazil Amorim LB, Helvecio E, de Oliveira CM, Ayres CF Ref: Pest Manag Sci, 69:1307, 2013 : PubMed
BACKGROUND: Culex quinquefasciatus is the vector of many agents of human diseases, including Wuchereria bancrofti, the parasite that causes bancroftian filariasis, an endemic disease in Pernambuco State, Brazil. Although temephos is not currently used to control C. quinquefasciatus, the species might be under a selection process from incidental exposure to this compound. This study aimed to evaluate the susceptibility status of C. quinquefasciatus to temephos, using bioassays, and to investigate its putative resistance mechanisms through biochemical assays and screening of the G119S mutation in the acetylcholinesterase gene, which is associated with organophosphate resistance, carried out by PCR and sequencing. RESULTS: The results showed that only mosquitoes from Santa Cruz do Capibaribe (SC) had an alteration in their susceptibility status (RR = 7.2-fold), while the other populations were all susceptible to the insecticide. Biochemical assays showed increased activity for all esterases in SC, as well as evidence of acetylcholinesterase insensitivity. The G119S mutation was detected in this population with a frequency of 0.11, but it was not found in the remaining populations. CONCLUSION: These data show that mechanisms of temephos resistance have been selected in natural C. quinquefasciatus populations from Pernambuco, which could undermine future control actions.
        
Title: First molecular genotyping of insensitive acetylcholinesterase associated with malathion resistance in Culex quinquefasciatus Say populations in Malaysia Low VL, Chen CD, Lim PE, Lee HL, Lim YA, Tan TK, Sofian-Azirun M Ref: Pest Manag Sci, 69:1362, 2013 : PubMed
BACKGROUND: Given that there is limited available information on the insensitive acetylcholinesterase in insect species in Malaysia, the present study aims to detect the presence of G119S mutation in the acetylcholinesterase gene of Culex quinquefasciatus from 14 residential areas across 13 states and a federal territory in Malaysia. RESULTS: The ace-1 sequence and PCR-RFLP test revealed the presence of glycine-serine ace-1 mutation in the wild populations of Cx. quinquefasciatus. Both direct sequencing and PCR-RFLP methods demonstrated similar results and revealed the presence of a heterozygous genotype at a very low frequency (18 out of 140 individuals), while a homozygous resistant genotype was not detected across any study site in Malaysia. In addition, statistical analysis also revealed that malathion resistance is associated with the frequency of ace-1(R) in Cx. quinquefasciatus populations. CONCLUSION: This study has demonstrated the first field-evolved instance of G119S mutation in Malaysian populations. Molecular identification of insensitive acetylcholinesterase provides significant insights into the evolution and adaptation of the Malaysian Cx. quinquefasciatus populations. (c) 2013 Society of Chemical Industry.
        
Title: Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon Osta MA, Rizk ZJ, Labbe P, Weill M, Knio K Ref: Parasit Vectors, 5:132, 2012 : PubMed
BACKGROUND: Analysis of Culex pipiens mosquitoes collected from a single site in Lebanon in 2005, revealed an alarming frequency of ace-1 alleles conferring resistance to organophosphate insecticides. Following this, in 2006 the majority of municipalities switched to pyrethroids after a long history of organophosphate usage in the country; however, since then no studies have assessed the impact of changing insecticide class on the frequency of resistant ace-1 alleles in C. pipiens. METHODS: C. pipiens mosquitoes were captured indoors from 25 villages across the country and subjected to established methods for the analysis of gene amplification at the Ester locus and target site mutations in ace-1 gene that confer resistance to organophosphates. RESULTS: We conducted the first large-scale screen for resistance to organosphosphates in C. pipiens mosquitoes collected from Lebanon. The frequency of carboxylesterase (Ester) and ace-1 alleles conferring resistance to organophosphates were assessed among C. pipiens mosquitoes collected from 25 different villages across the country between December 2008 and December 2009. Established enzymatic assay and PCR-based molecular tests, both diagnostic of the major target site mutations in ace-1 revealed the absence of the F290V mutation among sampled mosquitoes and significant reduction in the frequency of G119S mutation compared to that previously reported for mosquitoes collected from Beirut in 2005. We also identified a new duplicated ace-1 allele, named ace-1D13, exhibiting a resistant phenotype by associating a susceptible and a resistant copy of ace-1 in a mosquito line sampled from Beirut in 2005. Fisher's exact test on ace-1 frequencies in the new sample sites, showed that some populations exhibited a significant excess of heterozygotes, suggesting that the duplicated allele is still present. Starch gel electrophoresis indicated that resistance at the Ester locus was mainly attributed to the Ester2 allele, which exhibits a broad geographical distribution. CONCLUSIONS: Our analysis suggests that the frequency of resistant ace-1 alleles in mosquito populations can be downshifted, and in certain cases (F290V mutation) even eliminated, by switching to a different class of insecticides, possibly because of the fitness cost associated with these alleles.
        
Title: A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus Alout H, Berthomieu A, Hadjivassilis A, Weill M Ref: Insect Biochemistry & Molecular Biology, 37:41, 2007 : PubMed
In insects, selection of insecticide-insensitive acetylcholinesterase (AChE) is a very common resistance mechanism. Mosquitoes possess both AChE1 and AChE2 enzymes and insensitivity is conferred by single amino-acid changes located near the active site of the synaptic AChE1. Only two positions have been reported so far to be involved in resistance, suggesting a very high structural constraint of the AChE1 enzyme. In particular, the G119S substitution was selected in several mosquitoes' species and is now largely spread worldwide. Yet, a different type of AChE1 insensitivity was described 10 years ago in a Culex pipiens population collected in Cyprus in 1987 and fixed thereafter as the ACE-R strain. We report here the complete amino-acid sequence of the ACE-R AChE1 and show that resistance is associated with a single Phe-to-Val substitution of residue 290, which also lines the active site. Comparison of AChE1 activities of the recombinant F290V protein and ACE-R mosquito extracts confirmed the causal role of the substitution in insensitivity. Biochemical characteristics of the mutated protein indicated that the resistance level varies with the insecticide used. A molecular diagnosis test was designed to detect this mutation and was used to show that it is still present in Cyprus Island.
        
Title: Different amino-acid substitutions confer insecticide resistance through acetylcholinesterase 1 insensitivity in Culex vishnui and Culex tritaeniorhynchus (Diptera: Culicidae) from China Alout H, Berthomieu A, Cui F, Tan Y, Berticat C, Qiao C, Weill M Ref: Journal of Medical Entomology, 44:463, 2007 : PubMed
Insecticide resistance owing to insensitive acetylcholinesterase (AChE)1 has been reported in several mosquito species, and only two mutations in the ace-1 gene have been implicated in resistance: 119S and 331W substitutions. We analyzed the AChE1 resistance status of Culex vishnui (Theobald) and Culex tritaeniorhynchus Giles sampled in various regions of China. These two species displayed distinct mutations leading to AChE1 insensitivity; the 119S substitution in resistant C. vishnui mosquitoes and the 331W substitution in resistant C. tritaeniorhynchus. A biochemical test was validated to detect the 331W mutation in field samples. The comparison of the recombinant G119S and 331W mutant proteins produced in vitro with the AChE1 extracted from resistant mosquitoes indicated that the AChE1 insensitivity observed could be specifically attributed to these substitutions. Comparison of their biochemical characteristics indicated that the resistance conferred by these mutations depends on the insecticide used, regardless of its class. This resistance seemed to be fixed in the Cx. tritaeniorhynchus populations sampled in a 2000-km transect, suggesting a very high level of insecticide application or a low fitness cost associated with this 331W mutation.
Gene duplication is thought to be the main potential source of material for the evolution of new gene functions. Several models have been proposed for the evolution of new functions through duplication, most based on ancient events (Myr). We provide molecular evidence for the occurrence of several (at least 3) independent duplications of the ace-1 locus in the mosquito Culex pipiens, selected in response to insecticide pressure that probably occurred very recently (<40 years ago). This locus encodes the main target of several insecticides, the acetylcholinesterase. The duplications described consist of 2 alleles of ace-1, 1 susceptible and 1 resistant to insecticide, located on the same chromosome. These events were detected in different parts of the world and probably resulted from distinct mechanisms. We propose that duplications were selected because they reduce the fitness cost associated with the resistant ace-1 allele through the generation of persistent, advantageous heterozygosis. The rate of duplication of ace-1 in C. pipiens is probably underestimated, but seems to be rather high.
        
Title: Recent emergence of insensitive acetylcholinesterase in Chinese populations of the mosquito Culex pipiens (Diptera: Culicidae) Cui F, Raymond M, Berthomieu A, Alout H, Weill M, Qiao CL Ref: Journal of Medical Entomology, 43:878, 2006 : PubMed
Organophosphate/carbamate target resistance has emerged in Culex pipiens L. (Diptera: Culicidae), the vector of Wuchereria bancrofti and West Nile virus (family Flaviviridae, genus Flavivirus) in China. The insensitive acetylcholinesterase was detected in only one of 20 samples collected on a north-to-south transect. According to previous findings, a unique mutation, G119S in the ace-1 gene, explained this high insensitivity. Phylogenetic analysis indicates that the mutation G119S recently detected in China results from an independent mutation event. The G119S mutation thus occurred at least three times independently within the Cx. pipiens complex, once in the temperate (Cx. p. pipiens) and twice in the tropical form (Cx. p. quinquefasciatus). Bioassays performed with a purified G119S strain indicated that this substitution was associated with high levels of resistance to chlorpyrifos, fenitrothion, malathion, and parathion, but low levels of resistance to dichlorvos, trichlorfon, and fenthion. Hence, it is possible that in China, dichlorvos, trichlorfon, and fenthion will still achieve effective control even in the presence of the G119S mutation.
It has recently been reported that the synaptic acetylcholinesterase (AChE) in mosquitoes is encoded by the ace-1 gene, distinct and divergent from the ace-2 gene, which performs this function in Drosophila. This is an unprecedented situation within the Diptera order because both ace genes derive from an old duplication and are present in most insects and arthropods. Nevertheless, Drosophila possesses only the ace-2 gene. Thus, a secondary loss occurred during the evolution of Diptera, implying a vital function switch from one gene (ace-1) to the other (ace-2). We sampled 78 species, representing 50 families (27% of the Dipteran families) spread over all major subdivisions of the Diptera, and looked for ace-1 and ace-2 by systematic PCR screening to determine which taxonomic groups within the Diptera have this gene change. We show that this loss probably extends to all true flies (or Cyclorrhapha), a large monophyletic group of the Diptera. We also show that ace-2 plays a non-detectable role in the synaptic AChE in a lower Diptera species, suggesting that it has non-synaptic functions. A relative molecular evolution rate test showed that the intensity of purifying selection on ace-2 sequences is constant across the Diptera, irrespective of the presence or absence of ace-1, confirming the evolutionary importance of non-synaptic functions for this gene. We discuss the evolutionary scenarios for the takeover of ace-2 and the loss of ace-1, taking into account our limited knowledge of non-synaptic functions of ace genes and some specific adaptations of true flies.
        
Title: Cloning of culex pipiens pallens cDNA encoding acetylcholinesterase and homology modeling of ache. Li CX, Zhao TY, Dong YD Ref: Ji Sheng Chong Yu Yi Xue Kun Chong Xue Bao, 11:161, 2004 : PubMed
High insecticide resistance resulting from insensitive acetylcholinesterase (AChE) has emerged in mosquitoes. A single mutation (G119S of the ace-1 gene) explains this high resistance in Culex pipiens and in Anopheles gambiae. In order to provide better documentation of the ace-1 gene and the effect of the G119S mutation, we present a three-dimension structure model of AChE, showing that this unique substitution is localized in the oxyanion hole, explaining the insecticide insensitivity and its interference with the enzyme catalytic functions. As the G119S creates a restriction site, a simple PCR test was devised to detect its presence in both A. gambiae and C. pipiens, two mosquito species belonging to different subfamilies (Culicinae and Anophelinae). It is possibile that this mutation also explains the high resistance found in other mosquitoes, and the present results indicate that the PCR test detects the G119S mutation in the malaria vector A. albimanus. The G119S has thus occurred independently at least four times in mosquitoes and this PCR test is probably of broad applicability within the Culicidae family.
Resistance to insecticides among mosquitoes that act as vectors for malaria (Anopheles gambiae) and West Nile virus (Culex pipiens) emerged more than 25 years ago in Africa, America and Europe; this resistance is frequently due to a loss of sensitivity of the insect's acetylcholinesterase enzyme to organophosphates and carbamates1. Here we show that this insensitivity results from a single amino-acid substitution in the enzyme, which we found in ten highly resistant strains of C. pipiens from tropical (Africa and Caribbean) and temperate (Europe) areas, as well as in one resistant African strain of A. gambiae. Our identification of this mutation may pave the way for designing new insecticides.
        
Title: A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene Drosophila Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M Ref: Proc R Soc Lond B Biol Sci, 269:2007, 2002 : PubMed
Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed.