(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Saccharomycotina: NE > Saccharomycetes: NE > Saccharomycetales: NE > Debaryomycetaceae: NE > Candida/Lodderomyces clade: NE > Candida [Debaryomycetaceae]: NE > Candida albicans: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Candida albicans SC5314: N, E.
Candida albicans WO-1: N, E.
Candida albicans P94015: N, E.
Candida albicans P37005: N, E.
Candida albicans GC75: N, E.
Candida albicans P57072: N, E.
Candida albicans P78048: N, E.
Candida albicans P37037: N, E.
Candida albicans 12C: N, E.
Candida albicans P87: N, E.
Candida albicans 19F: N, E.
Candida albicans L26: N, E.
Candida albicans P34048: N, E.
Candida albicans P57055: N, E.
Candida albicans P75063: N, E.
Candida albicans P76055: N, E.
Candida albicans P37039: N, E.
Candida albicans P75010: N, E.
Candida albicans P76067: N, E.
Candida albicans P75016: N, E.
Candida albicans Ca6: N, E.
Candida albicans P78042: N, E.
Candida albicans P60002: N, E.
Candida albicans Ca529L: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MLYLILFLIAPIYAGLIFPTKPSSDPFYNPPKGFENAAVGDILQSRATPK SITGGFTPLKIQNSWQLLVRSEDSFGNPNVIVTTVIEPVNADPSKIASYQ VFEDAAKADCAPSYALQFGSDLTTFVTQAEMYLMAPLLDQGYYVVSPDYE GPKSTFTIGKQSGQAVLNSIRAALKSGKITNIKDDAKVVMWGYSGGSLAS GWAAALQPSYAPELGGNLLGAALGGFVTNITATAQATDGTVFAGIVANAL GGVANEYPEFKSILQSDTDKKSVFEEFDGHCLIDGVLNYIGTSFLTGDHK IFKTGWDILKNPKIGKVVEDNGLVYQKQLVPKIPVFIYHGSIDQIVPIVD TKKTYQNWCDAGISSLEFAEDASNGHLTEAIMGAPAALTWIIDRFDGKQT VSGCQHIQRFSNLEYPNIPSSIANYFKAAMDVVLHLGLGPDVQKDQVSPE GIKKLGSIEMRWL
The size of the genome in the opportunistic fungus Candida albicans is 15.6 Mb. Whole-genome shotgun sequencing was carried out at Stanford University where the sequences were assembled into 412 contigs. C. albicans is a diploid basically, and analysis of the sequence is complicated due to repeated sequences and to sequence polymorphism between homologous chromosomes. Chromosome 7 is 1 Mb in size and the best characterized of the 8 chromosomes in C. albicans. We assigned 16 of the contigs, ranging in length from 7309 to 267,590 bp, to chromosome 7 and determined sequences of 16 regions. These regions included four gaps, a misassembled sequence, and two major repeat sequences (MRS) of >16 kb. The length of the continuous sequence attained was 949,626 bp and provided complete coverage of chromosome 7 except for telomeric regions. Sequence analysis was carried out and predicted 404 genes, 11 of which included at least one intron. A 7-kb indel, which might be caused by a retrotransposon, was identified as the largest difference between the homologous chromosomes. Synteny analysis revealed that the degree of synteny between C. albicans and Saccharomyces cerevisiae is too weak to use for completion of the genomic sequence in C. albicans.
We present the diploid genome sequence of the fungal pathogen Candida albicans. Because C. albicans has no known haploid or homozygous form, sequencing was performed as a whole-genome shotgun of the heterozygous diploid genome in strain SC5314, a clinical isolate that is the parent of strains widely used for molecular analysis. We developed computational methods to assemble a diploid genome sequence in good agreement with available physical mapping data. We provide a whole-genome description of heterozygosity in the organism. Comparative genomic analyses provide important clues about the evolution of the species and its mechanisms of pathogenesis.
        
Title: Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schafer W Ref: Arch Microbiol, 174:362, 2000 : PubMed
Extracellular lipolytic activity enabled the human pathogen Candida albicans to grow on lipids as the sole source of carbon. Nine new members of a lipase gene family (LIP2-LIP10) with high similarities to the recently cloned lipase gene LIP1 were cloned and characterised. The ORFs of all ten lipase genes are between 1281 and 1416 bp long and encode highly similar proteins with up to 80% identical amino acid sequences. Each deduced lipase sequence has conserved lipase motifs, four conserved cysteine residues, conserved putative N-glycosylation sites and similar hydrophobicity profiles. All LIP genes, except LIP7, also encode an N-terminal signal sequence. LIP3-LIP6 were expressed in all media and at all time points of growth tested as shown by Northern blot and RT-PCR analyses. LIP1, LIP3, LIP4, LIP5, LIP6 and LIP8 were expressed in medium with Tween 40 as a sole source of carbon. However, the same genes were also expressed in media without lipids. Two other genes, LIP2 and LIP9, were only expressed in media lacking lipids. Transcripts of most lipase genes were detected during the yeast-to-hyphal transition. Furthermore, LIP5, LIP6, LIP8 and LIP9 were found to be expressed during experimental infection of mice. These data indicate lipid-independent, highly flexible in vitro and in vivo expression of a large number of LIP genes, possibly reflecting broad lipolytic activity, which may contribute to the persistence and virulence of C. albicans in human tissue.
        
3 lessTitle: A novel cold-active lipase from Candida albicans: cloning, expression and characterization of the recombinant enzyme Lan DM, Yang N, Wang WK, Shen YF, Yang B, Wang YH Ref: Int J Mol Sci, 12:3950, 2011 : PubMed
A novel lipase gene lip5 from the yeast Candida albicans was cloned and sequenced. Alignment of amino acid sequences revealed that 86-34% identity exists with lipases from other Candida species. The lipase and its mutants were expressed in the yeast Pichia pastoris, where alternative codon usage caused the mistranslation of 154-Ser and 293-Ser as leucine. 154-Ser to leucine resulted in loss of expression of Lip5, and 293-Ser to leucine caused a marked reduction in the lipase activity. Lip5-DM, which has double mutations that revert 154 and 293 to serine residues, showed good lipase activity, and was overexpressed and purified by (NH(4))(2)SO(4) precipitation and ion-exchange chromatography. The pure Lip5-DM was stable at low temperatures ranging from 15-35 degrees C and pH 5-9, with the optimal conditions being 15-25 degrees C and pH 5-6. The activation energy of recombinant lipase was 8.5 Kcal/mol between 5 and 25 degrees C, suggesting that Lip5-DM was a cold-active lipase. Its activity was found to increase in the presence of Zn(2+), but it was strongly inhibited by Fe(2+), Fe(3+), Hg(2+) and some surfactants. In addition, the Lip5-DM could not tolerate water-miscible organic solvents. Lip5-DM exhibited a preference for the short-and medium-chain length p-nitrophenyl (C4 and C8 acyl group) esters rather than the long chain length p-nitrophenyl esters (C12, C16 and C18 acyl group) with highest activity observed with the C8 derivatives. The recombinant enzyme displayed activity toward triacylglycerols, such as olive oil and safflower oil.
Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.
        
Title: Sequence finishing and gene mapping for Candida albicans chromosome 7 and syntenic analysis against the Saccharomyces cerevisiae genome Chibana H, Oka N, Nakayama H, Aoyama T, Magee BB, Magee PT, Mikami Y Ref: Genetics, 170:1525, 2005 : PubMed
The size of the genome in the opportunistic fungus Candida albicans is 15.6 Mb. Whole-genome shotgun sequencing was carried out at Stanford University where the sequences were assembled into 412 contigs. C. albicans is a diploid basically, and analysis of the sequence is complicated due to repeated sequences and to sequence polymorphism between homologous chromosomes. Chromosome 7 is 1 Mb in size and the best characterized of the 8 chromosomes in C. albicans. We assigned 16 of the contigs, ranging in length from 7309 to 267,590 bp, to chromosome 7 and determined sequences of 16 regions. These regions included four gaps, a misassembled sequence, and two major repeat sequences (MRS) of >16 kb. The length of the continuous sequence attained was 949,626 bp and provided complete coverage of chromosome 7 except for telomeric regions. Sequence analysis was carried out and predicted 404 genes, 11 of which included at least one intron. A 7-kb indel, which might be caused by a retrotransposon, was identified as the largest difference between the homologous chromosomes. Synteny analysis revealed that the degree of synteny between C. albicans and Saccharomyces cerevisiae is too weak to use for completion of the genomic sequence in C. albicans.
We present the diploid genome sequence of the fungal pathogen Candida albicans. Because C. albicans has no known haploid or homozygous form, sequencing was performed as a whole-genome shotgun of the heterozygous diploid genome in strain SC5314, a clinical isolate that is the parent of strains widely used for molecular analysis. We developed computational methods to assemble a diploid genome sequence in good agreement with available physical mapping data. We provide a whole-genome description of heterozygosity in the organism. Comparative genomic analyses provide important clues about the evolution of the species and its mechanisms of pathogenesis.
        
Title: Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schafer W Ref: Arch Microbiol, 174:362, 2000 : PubMed
Extracellular lipolytic activity enabled the human pathogen Candida albicans to grow on lipids as the sole source of carbon. Nine new members of a lipase gene family (LIP2-LIP10) with high similarities to the recently cloned lipase gene LIP1 were cloned and characterised. The ORFs of all ten lipase genes are between 1281 and 1416 bp long and encode highly similar proteins with up to 80% identical amino acid sequences. Each deduced lipase sequence has conserved lipase motifs, four conserved cysteine residues, conserved putative N-glycosylation sites and similar hydrophobicity profiles. All LIP genes, except LIP7, also encode an N-terminal signal sequence. LIP3-LIP6 were expressed in all media and at all time points of growth tested as shown by Northern blot and RT-PCR analyses. LIP1, LIP3, LIP4, LIP5, LIP6 and LIP8 were expressed in medium with Tween 40 as a sole source of carbon. However, the same genes were also expressed in media without lipids. Two other genes, LIP2 and LIP9, were only expressed in media lacking lipids. Transcripts of most lipase genes were detected during the yeast-to-hyphal transition. Furthermore, LIP5, LIP6, LIP8 and LIP9 were found to be expressed during experimental infection of mice. These data indicate lipid-independent, highly flexible in vitro and in vivo expression of a large number of LIP genes, possibly reflecting broad lipolytic activity, which may contribute to the persistence and virulence of C. albicans in human tissue.
        
Title: A Candida albicans genome project: cosmid contigs, physical mapping, and gene isolation Tait E, Simon MC, King S, Brown AJ, Gow NA, Shaw DJ Ref: Fungal Genet Biol, 21:308, 1997 : PubMed
A new project to map the genome of the pathogenic fungus, Candida albicans, has been started. The entire genome was cloned as 5088 cosmids, stored in individual microtiter plate wells. DNA was prepared and fingerprinted using restriction digestion, fluorescent labeling, and analysis on an ABI sequencer. These data are being used to construct contigs of the genome. Simultaneously, a DNA pooling system has been set up, suitable for PCR-based isolation of cosmids containing any known gene. Ultimately, these approaches will lead to the creation of a physically based map of the C. albicans genome, providing the means to localize precisely all the genes, act as a substrate for genome sequencing projects, and provide probes for future studies of genome rearrangement and comparative genomics.