(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Protostomia: NE > Ecdysozoa: NE > Nematoda: NE > Chromadorea: NE > Rhabditida: NE > Rhabditoidea: NE > Rhabditidae: NE > Peloderinae: NE > Caenorhabditis: NE > Caenorhabditis elegans: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MRNSLLFFIFLPSTILAVDLIHLHDGSPLFGEEVLSQTGKPLTRFQGIPF AEPPVGNLRFKKPKPKQPWRIPLNATTPPNSCIQSEDTYFGDFYGSTMWN ANTKLSEDCLYLNVYVPGKVDPNKKLAVMVWVYGGGFWSGTATLDVYDGR ILTVEENVILVAMNYRVSIFGFLYMNRPEAPGNMGMWDQLLAMKWVHKNI DLFGGDLSRITLFGESAGAASVSIHMLSPKSAPYFHRAIIQSGSATSPWA IEPRDVALARAVILYNAMKCGNMSLINPDYDRILDCFQRADADALRENEW APVREFGDFPWVPVVDGDFLLENAQTSLKQGNFKKTQLLAGSNRDESIYF LTYQLPDIFPVADFFTKTDFIKDRQLWIKGVKDLLPRQILKCQLTLAAVL HEYEPQDLPVTPRDWINAMDKMLGDYHFTCSVNEMALAHTKHGGDTYYYY FTHRASQQTWPEWMGVLHGYEINFIFGEPLNQKRFNYTDEERELSNRFMR YWANFAKTGDPNKNEDGSFTQDVWPKYNSVSMEYMNMTVESSYPSMKRIG HGPRRKECAFWKAYLPNLMAAVADVGDPYLVWKQQMDKWQNEYITDWQYH FEQYKRYQTYRQSDSETCGG
References
2 moreTitle: Mutation of the feh-1 gene, the Caenorhabditis elegans orthologue of mammalian Fe65, decreases the expression of two acetylcholinesterase genes Bimonte M, Gianni D, Allegra D, Russo T, Zambrano N Ref: European Journal of Neuroscience, 20:1483, 2004 : PubMed
The molecular adaptor Fe65 is one of the cytosolic ligands of the Alzheimer's beta-amyloid precursor protein (APP), and this complex is believed to play important roles in mammalian cells. Upon cleavage of APP by specific processing activities, the complex between Fe65 and the APP intracellular domain (AICD) translocates to the nucleus. Experimental evidence suggests that the Fe65-AICD complex regulates gene transcription. In Caenorhabditis elegans the orthologue of the Fe65 gene, feh-1, regulates pharyngeal activity. In fact, the rate of pharyngeal contraction is increased following transient or stable suppression of the feh-1 gene expression. Here we show that the increased contraction rate of the pharynx in feh-1 mutant worms is associated to decreased acetylcholinesterase activity. The decreased activity is accompanied by reduced expression of ace-1 and ace-2 transcripts, coding for the two major acetylcholinesterase activities in the nematode. These results indicate a target of the regulatory mechanisms based on the Fe65-APP complex that could be relevant for the pathogenesis of Alzheimer's disease.
Two genes (ace-1 and ace-2) encode two major classes (A and B) of acetylcholinesterase (AChE) in the nematode Caenorhabditis elegans. A null mutation in ace-1 (allele p1000) suppresses all acetylcholinesterase activity of class A. We have identified an opal mutation TGG (W99)-->TGA (Stop) as the only alteration in the mutated gene. This leads to a truncated protein (98 instead of 620 amino acids) with no enzymatic activity. The mutation also reduces the level of ace-1 transcripts to only 10% of that in wild-type animals. This most likely results from a destabilization of mRNA containing the nonsense message. In contrast, compensation of class B by class A AChE in the null mutant strain ace-2 takes place with unchanged ace-1 mRNA level and enzymatic activity similar to class A AChE.
        
Title: cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans Arpagaus M, Fedon Y, Cousin X, Chatonnet A, Berge JB, Fournier D, Toutant JP Ref: Journal of Biological Chemistry, 269:9957, 1994 : PubMed
Three genes, ace-1, ace-2, and ace-3, encode three acetylcholinesterase classes (A, B, and C) in the nematode Caenorhabditis elegans. A fragment of genomic DNA was amplified by a polymerase chain reaction (PCR) using degenerate oligonucleotides based on sequences conserved in the cholinesterase family. This fragment mapped to chromosome X at a position that perfectly matched the location of ace-1 previously determined by genetic methods. Comparison of genomic and cDNA sequences showed that the open reading frame was interrupted by eight introns. The product of ace-1 (ACE-1, 620 amino acids) presented 42% identity with Torpedo and human acetylcholinesterases, 41% with human butyrylcholinesterase, and 35% with Drosophila acetylcholinesterase. The overall structure of cholinesterases was conserved in ACE-1 as indicated by the conserved sequence positions of Ser-216, His-468, and Glu-346 (S200, H440, E327 in Torpedo (AChE) as components of the catalytic triad, of the six cysteines which form three intrachain disulfide bonds, and of Trp-99(84), a critical side chain in the choline binding site. Spodoptera Sf9 cells were infected by a recombinant baculovirus containing ace-1 cDNA. The secreted enzyme was active and existed as hydrophilic 5 and 11.5 S molecular forms. It hydrolyzed both acetylthiocholine and butyrylthiocholine and was inhibited by acetylthiocholine above 10 mM.
        
2 lessTitle: Mutation of the feh-1 gene, the Caenorhabditis elegans orthologue of mammalian Fe65, decreases the expression of two acetylcholinesterase genes Bimonte M, Gianni D, Allegra D, Russo T, Zambrano N Ref: European Journal of Neuroscience, 20:1483, 2004 : PubMed
The molecular adaptor Fe65 is one of the cytosolic ligands of the Alzheimer's beta-amyloid precursor protein (APP), and this complex is believed to play important roles in mammalian cells. Upon cleavage of APP by specific processing activities, the complex between Fe65 and the APP intracellular domain (AICD) translocates to the nucleus. Experimental evidence suggests that the Fe65-AICD complex regulates gene transcription. In Caenorhabditis elegans the orthologue of the Fe65 gene, feh-1, regulates pharyngeal activity. In fact, the rate of pharyngeal contraction is increased following transient or stable suppression of the feh-1 gene expression. Here we show that the increased contraction rate of the pharynx in feh-1 mutant worms is associated to decreased acetylcholinesterase activity. The decreased activity is accompanied by reduced expression of ace-1 and ace-2 transcripts, coding for the two major acetylcholinesterase activities in the nematode. These results indicate a target of the regulatory mechanisms based on the Fe65-APP complex that could be relevant for the pathogenesis of Alzheimer's disease.
        
Title: Genome sequence of the nematode C. elegans: a platform for investigating biology. The C. elegans Sequencing Consortium CEGSC Ref: Science, 282:2012, 1998 : PubMed
The 97-megabase genomic sequence of the nematode Caenorhabditis elegans reveals over 19,000 genes. More than 40 percent of the predicted protein products find significant matches in other organisms. There is a variety of repeated sequences, both local and dispersed. The distinctive distribution of some repeats and highly conserved genes provides evidence for a regional organization of the chromosomes.
Two genes (ace-1 and ace-2) encode two major classes (A and B) of acetylcholinesterase (AChE) in the nematode Caenorhabditis elegans. A null mutation in ace-1 (allele p1000) suppresses all acetylcholinesterase activity of class A. We have identified an opal mutation TGG (W99)-->TGA (Stop) as the only alteration in the mutated gene. This leads to a truncated protein (98 instead of 620 amino acids) with no enzymatic activity. The mutation also reduces the level of ace-1 transcripts to only 10% of that in wild-type animals. This most likely results from a destabilization of mRNA containing the nonsense message. In contrast, compensation of class B by class A AChE in the null mutant strain ace-2 takes place with unchanged ace-1 mRNA level and enzymatic activity similar to class A AChE.
        
Title: cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans Arpagaus M, Fedon Y, Cousin X, Chatonnet A, Berge JB, Fournier D, Toutant JP Ref: Journal of Biological Chemistry, 269:9957, 1994 : PubMed
Three genes, ace-1, ace-2, and ace-3, encode three acetylcholinesterase classes (A, B, and C) in the nematode Caenorhabditis elegans. A fragment of genomic DNA was amplified by a polymerase chain reaction (PCR) using degenerate oligonucleotides based on sequences conserved in the cholinesterase family. This fragment mapped to chromosome X at a position that perfectly matched the location of ace-1 previously determined by genetic methods. Comparison of genomic and cDNA sequences showed that the open reading frame was interrupted by eight introns. The product of ace-1 (ACE-1, 620 amino acids) presented 42% identity with Torpedo and human acetylcholinesterases, 41% with human butyrylcholinesterase, and 35% with Drosophila acetylcholinesterase. The overall structure of cholinesterases was conserved in ACE-1 as indicated by the conserved sequence positions of Ser-216, His-468, and Glu-346 (S200, H440, E327 in Torpedo (AChE) as components of the catalytic triad, of the six cysteines which form three intrachain disulfide bonds, and of Trp-99(84), a critical side chain in the choline binding site. Spodoptera Sf9 cells were infected by a recombinant baculovirus containing ace-1 cDNA. The secreted enzyme was active and existed as hydrophilic 5 and 11.5 S molecular forms. It hydrolyzed both acetylthiocholine and butyrylthiocholine and was inhibited by acetylthiocholine above 10 mM.
Within a set of five separable molecular forms of acetylcholinesterase found in the nematode Caenorhabditis elegans, previously reported differences in kinetic properties identify two classes, A and B, likely to be under separate genetic control. Using differences between these classes in sensitivity to inactivation by sodium deoxycholate, a screening procedure was devised to search for mutants affected only in class A forms. Among 171 previously isolated behavioral and morphological mutant strains examined by this procedure, one (PR946) proved to be of the expected type, exhibiting a selective deficiency of class A acetylcholinesterase forms. Although originally isolated because of its uncoordinated behavior, this strain was subsequently shown to harbor mutations in two genes; one in the previously identified gene unc-3, accounting for its behavior, and one in a newly identified gene, ace-1, accounting for its selective acetylcholinesterase deficiency. Derivatives homozygous only for the ace-1 mutation also lacked class A acetylcholinesterase forms, but were behaviorally and developmentally indistinguishable from wild type. The gene ace-1 has been mapped near the right end of the X chromosome. Gene dosage experiments suggest that it may be a structural gene for a component of class A acetylcholinesterase forms.