(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Betaproteobacteria: NE > Burkholderiales: NE > Burkholderiaceae: NE > Paraburkholderia: NE > Paraburkholderia xenovorans: NE > Paraburkholderia xenovorans LB400: NE
Molecular evidence
Database
No mutation 12 structures(e.g. : 2OG1, 2PU5, 2PU7... more)(less) 2OG1: Crystal Structure of BphD, a C-C hydrolase from Burkholderia xenovorans LB400, 2PU5: Crystal Structure of a C-C bond hydrolase, BphD, from Burkholderia xenovorans LB400, 2PU7: Crystal Structure of S112A/H265A double mutant of a C-C hydrolase, BphD, from Burkholderia xenovorans LB400, 2PUH: Crystal Structure of the S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with its substrate HOPDA, 2PUJ: Crystal Structure of the S112A/H265A double mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with its substrate HOPDA, 2RHT: Crystal Structure of the S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with 3-Cl HOPDA, 2RHW: Crystal Structure of the S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with 3,10-Di-Fluoro HOPDA, 2RI6: Crystal Structure of S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400 (replaced 2PU6), 3V1K: Crystal Structure of the H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400., 3V1L: Crystal Structure of the S112A/H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, 3V1M: Crystal Structure of the S112A/H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, after exposure to its substrate HOPDA, 3V1N: Crystal Structure of the H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, after exposure to its substrate HOPDA No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MTALTESSTSKFVKINEKGFSDFNIHYNEAGNGETVIMLHGGGPGAGGWS NYYRNVGPFVDAGYRVILKDSPGFNKSDAVVMDEQRGLVNARAVKGLMDA LDIDRAHLVGNSMGGATALNFALEYPDRIGKLILMGPGGLGPSMFAPMPM EGIKLLFKLYAEPSYETLKQMLQVFLYDQSLITEELLQGRWEAIQRQPEH LKNFLISAQKAPLSTWDVTARLGEIKAKTFITWGRDDRFVPLDHGLKLLW NIDDARLHVFSKCGHWAQWEHADEFNRLVIDFLRHA
References
5 moreTitle: Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway Horsman GP, Ke J, Dai S, Seah SY, Bolin JT, Eltis LD Ref: Biochemistry, 45:11071, 2006 : PubMed
Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphD(LB400)) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 degrees C showed that the enzyme rapidly (1/tau(1) approximately 500 s(-1)) transforms HOPDA (lambda(max) = 434 nm) into a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/tau(2) = 54 s(-1), 1/tau(3) = 6 s(-1) approximately k(cat)) with simultaneous biphasic appearance (48 and 8 s(-1)) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/tau(1) and 1/tau(2) but affected neither 1/tau(3) nor k(cat), suggesting that 1/tau(2) may reflect diffusive HPD dissociation, and 1/tau(3) represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and, therefore, postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (lambda(max) = 492 nm). The crystal structures of the wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 A resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate.
        
Title: Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls Seah SY, Labbe G, Nerdinger S, Johnson MR, Snieckus V, Eltis LD Ref: Journal of Biological Chemistry, 275:15701, 2000 : PubMed
The ability of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) hydrolase (BphD) of Burkholderia cepacia LB400 to hydrolyze polychlorinated biphenyl (PCB) metabolites was assessed by determining its specificity for monochlorinated HOPDAs. The relative specificities of BphD for HOPDAs bearing chlorine substituents on the phenyl moiety were 0.28, 0.38, and 1.1 for 8-Cl, 9-Cl, and 10-Cl HOPDA, respectively, versus HOPDA (100 mm phosphate, pH 7.5, 25 degrees C). In contrast, HOPDAs bearing chlorine substituents on the dienoate moiety were poor substrates for BphD, which hydrolyzed 3-Cl, 4-Cl, and 5-Cl HOPDA at relative maximal rates of 2.1 x 10(-3), 1.4 x 10(-4), and 0.36, respectively, versus HOPDA. The enzymatic transformation of 3-, 5-, 8-, 9-, and 10-Cl HOPDAs yielded stoichiometric quantities of the corresponding benzoate, indicating that BphD catalyzes the hydrolysis of these HOPDAs in the same manner as unchlorinated HOPDA. HOPDAs also underwent a nonenzymatic transformation to products that included acetophenone. In the case of 4-Cl HOPDA, this transformation proceeded via the formation of 4-OH HOPDA (t(12) = 2.8 h; 100 mm phosphate, pH 7.5, 25 degrees C). 3-Cl HOPDA (t(12) = 504 h) was almost 3 times more stable than 4-OH HOPDA. Finally, 3-Cl, 4-Cl and 4-OH HOPDAs competitively inhibited the BphD-catalyzed hydrolysis of HOPDA (K(ic) values of 0.57 +/- 0. 04, 3.6 +/- 0.2, and 0.95 +/- 0.04 microm, respectively). These results explain the accumulation of HOPDAs and chloroacetophenones in the microbial degradation of certain PCB congeners. More significantly, they indicate that in the degradation of PCB mixtures, BphD would be inhibited, thereby slowing the mineralization of all congeners. BphD is thus a key determinant in the aerobic microbial degradation of PCBs.
        
Title: Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation Hofer B, Eltis LD, Dowling DN, Timmis KN Ref: Gene, 130:47, 1993 : PubMed
The cistronic organization of the bph locus, encoding a biphenyl/polychlorinated biphenyl (PCB) degradation pathway in Pseudomonas sp. LB400, has been elucidated. Seven structural genes, encoding biphenyl dioxygenase (bphA1A2A3A4), biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (bphB), biphenyl-2,3-diol-1,2-dioxygenase (bphC) and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (bphD), have been located. The complete sequences of bphB, bphC and bphD are reported. Taken together with the data of Erickson and Mondello [J. Bacteriol. 174 (1992) 2903-2912], Pseudomonas sp. LB400 is now the first strain for which the sequences of all genes encoding the catabolism from biphenyls to benzoates have been determined. Comparisons of the deduced amino acid (aa) sequences of BphB, BphC and BphD with those of related proteins led to predictions about catalytically important aa residues. Six Bph have been detected and identified. Five of them could be obtained as the most abundant proteins when their genes were expressed in Escherichia coli.
        
5 lessTitle: A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation Dong L, Zhang S, Liu Y Ref: J Mol Graph Model, 76:448, 2017 : PubMed
As members of the alpha/beta-hydrolase superfamily, Meta-cleavage product (MCP) hydrolases generally utilize a Ser-His-Asp catalytic triad to hydrolyze the cleavage of CC bond during the aerobic catabolism of aromatic compounds by bacteria. BphD is one kind of MCP hydrolase that catalyzes the hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. In this article, a combined quantum mechanics and molecule mechanics (QM/MM) approach has been employed to explore the reaction mechanism of BphD from Burkholderia xenovorans LB400. On the basis of the recently resolved crystal structures, three computational models have been constructed. Our calculation results reveal that BphD utilizes a water-assisted nucleophilic mechanism, which contains acylation and deacylation stages. In acylation reaction, an active site water molecule assists the proton transfer from Ser112 to the carbanion intermediate (substrate) by forming hydrogen bonds with Ser112 and His265, and this proton transfer is in concert with the nucleophilic attack of deprotonated Ser112 on the C6-carbonyl of substrate to form the acylated intermediate. In deacylation, the Asp237-His265 dyad acts as a general base to activate the hydrolytic water, whose nucleophilic attack leads to the collapses of acyl-enzyme intermediate. The acylation and deacylation process correspond to the highest energy barriers of 21.0 and 23.9kcal/mol, respectively. During the catalytic reaction, the active site water and Asp237-His265 dyad play an important role for each elementary steps.
        
Title: Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad Ruzzini AC, Ghosh S, Horsman GP, Foster LJ, Bolin JT, Eltis LD Ref: J Am Chem Soc, 134:4615, 2012 : PubMed
Meta-cleavage product (MCP) hydrolases are members of the alpha/beta-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6A resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decay of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of (18)O into the benzoate produced during hydrolysis in H(2)(18)O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES(red), previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.
        
Title: The molecular basis for inhibition of BphD, a C-C bond hydrolase involved in polychlorinated biphenyls degradation: large 3-substituents prevent tautomerization Bhowmik S, Horsman GP, Bolin JT, Eltis LD Ref: Journal of Biological Chemistry, 282:36377, 2007 : PubMed
The microbial degradation of polychlorinated biphenyls (PCBs) by the biphenyl catabolic (Bph) pathway is limited in part by the pathway's fourth enzyme, BphD. BphD catalyzes an unusual carbon-carbon bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA), in which the substrate is subject to histidine-mediated enol-keto tautomerization prior to hydrolysis. Chlorinated HOPDAs such as 3-Cl HOPDA inhibit BphD. Here we report that BphD preferentially hydrolyzed a series of 3-substituted HOPDAs in the order H > F > Cl > Me, suggesting that catalysis is affected by steric, not electronic, determinants. Transient state kinetic studies performed using WT BphD and the hydrolysis-defective S112A variant indicated that large 3-substituents inhibited His-265-catalyzed tautomerization by 5 orders of magnitude. Structural analyses of S112A:3-Cl HOPDA and S112A:3,10-diF HOPDA complexes revealed a nonproductive binding mode in which the plane defined by the C atoms of HOPDA's dienoate moiety is nearly orthogonal to that of the proposed keto tautomer observed in the S112A:HOPDA complex. Moreover, in the 3-Cl HOPDA complex, the 2-hydroxo group is moved by 3.6 A from its position near the catalytic His-265 to hydrogen bond with Arg-190 and access of His-265 is blocked by the 3-Cl substituent. Nonproductive binding may be stabilized by interactions involving the 3-substituent with non-polar side chains. Solvent molecules have poor access to C6 in the S112A:3-Cl HOPDA structure, more consistent with hydrolysis occurring via an acyl-enzyme than a gem-diol intermediate. These results provide insight into engineering BphD for PCB degradation.
        
Title: The tautomeric half-reaction of BphD, a C-C bond hydrolase. Kinetic and structural evidence supporting a key role for histidine 265 of the catalytic triad Horsman GP, Bhowmik S, Seah SY, Kumar P, Bolin JT, Eltis LD Ref: Journal of Biological Chemistry, 282:19894, 2007 : PubMed
BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA (lambda(max) is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum (lambda(max) is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate (lambda(max) is 506 nm) with a similar rate, 1/tau approximately 500 s(-1). The crystal structure of the S112A:HOPDA complex at 1.8-A resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7 A away.
        
Title: Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway Horsman GP, Ke J, Dai S, Seah SY, Bolin JT, Eltis LD Ref: Biochemistry, 45:11071, 2006 : PubMed
Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphD(LB400)) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 degrees C showed that the enzyme rapidly (1/tau(1) approximately 500 s(-1)) transforms HOPDA (lambda(max) = 434 nm) into a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/tau(2) = 54 s(-1), 1/tau(3) = 6 s(-1) approximately k(cat)) with simultaneous biphasic appearance (48 and 8 s(-1)) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/tau(1) and 1/tau(2) but affected neither 1/tau(3) nor k(cat), suggesting that 1/tau(2) may reflect diffusive HPD dissociation, and 1/tau(3) represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and, therefore, postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (lambda(max) = 492 nm). The crystal structures of the wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 A resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate.
        
Title: Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls Seah SY, Labbe G, Nerdinger S, Johnson MR, Snieckus V, Eltis LD Ref: Journal of Biological Chemistry, 275:15701, 2000 : PubMed
The ability of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) hydrolase (BphD) of Burkholderia cepacia LB400 to hydrolyze polychlorinated biphenyl (PCB) metabolites was assessed by determining its specificity for monochlorinated HOPDAs. The relative specificities of BphD for HOPDAs bearing chlorine substituents on the phenyl moiety were 0.28, 0.38, and 1.1 for 8-Cl, 9-Cl, and 10-Cl HOPDA, respectively, versus HOPDA (100 mm phosphate, pH 7.5, 25 degrees C). In contrast, HOPDAs bearing chlorine substituents on the dienoate moiety were poor substrates for BphD, which hydrolyzed 3-Cl, 4-Cl, and 5-Cl HOPDA at relative maximal rates of 2.1 x 10(-3), 1.4 x 10(-4), and 0.36, respectively, versus HOPDA. The enzymatic transformation of 3-, 5-, 8-, 9-, and 10-Cl HOPDAs yielded stoichiometric quantities of the corresponding benzoate, indicating that BphD catalyzes the hydrolysis of these HOPDAs in the same manner as unchlorinated HOPDA. HOPDAs also underwent a nonenzymatic transformation to products that included acetophenone. In the case of 4-Cl HOPDA, this transformation proceeded via the formation of 4-OH HOPDA (t(12) = 2.8 h; 100 mm phosphate, pH 7.5, 25 degrees C). 3-Cl HOPDA (t(12) = 504 h) was almost 3 times more stable than 4-OH HOPDA. Finally, 3-Cl, 4-Cl and 4-OH HOPDAs competitively inhibited the BphD-catalyzed hydrolysis of HOPDA (K(ic) values of 0.57 +/- 0. 04, 3.6 +/- 0.2, and 0.95 +/- 0.04 microm, respectively). These results explain the accumulation of HOPDAs and chloroacetophenones in the microbial degradation of certain PCB congeners. More significantly, they indicate that in the degradation of PCB mixtures, BphD would be inhibited, thereby slowing the mineralization of all congeners. BphD is thus a key determinant in the aerobic microbial degradation of PCBs.
        
Title: Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls Seah SY, Terracina G, Bolin JT, Riebel P, Snieckus V, Eltis LD Ref: Journal of Biological Chemistry, 273:22943, 1998 : PubMed
2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (6-phenyl-HODA) hydrolase (BphD), an enzyme of the biphenyl biodegradation pathway encoded by the bphD gene of Burkholderia cepacia LB400, was hyperexpressed and purified to apparent homogeneity. SDS-polyacrylamide gel electrophoresis confirmed that BphD has a subunit molecular mass of 32 kDa, while gel filtration demonstrated that it is a homotetramer of molecular weight 122,000. The enzyme hydrolyzed 6-phenyl-HODA with a kcat of 5.0 (+/- 0.07) s-1 and a kcat/Km of 2.0 (+/- 0.08) x 10(7) M-1 s-1 (100 mM phosphate, pH 7.5, 25 degreesC). The specificity of BphD for other 2-hydroxy-6-oxohexa-2,4-dienoates (HODAs) decreased markedly with the size of the C6 substituent; 6-methyl-HODA, the meta cleavage product of 3-methylcatechol, was hydrolyzed approximately 2300 times less specifically than 6-phenyl-HODA. By comparison, the homologous hydrolase from the toluene degradation pathway, TodF, showed highest specificity for 6-methyl- and 6-ethyl-HODA (kcat/Km of 2.0 (+/- 0.05) x 10(6) M-1 s-1 and 9.0 (+/- 0.5) x 10(6) M-1 s-1, respectively). TodF showed no detectable activity toward 6-phenyl-HODA and 6-tert-butyl-HODA. Neither BphD nor TodF hydrolyzed 5-methyl-HODA efficiently. The kcat of BphD determined by monitoring product formation was about half that determined by monitoring substrate disappearance, suggesting that some uncoupling of substrate utilization and product formation occurs during the enzyme catalyzed reaction. Crystals of BphD were obtained using ammonium sulfate combined with polyethylene glycol 400 as the precipitant. Diffraction was observed to a resolution of at least 1.9 A, and the evaluation of self-rotation functions confirmed 222 (D2) molecular symmetry.
        
Title: Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation Hofer B, Eltis LD, Dowling DN, Timmis KN Ref: Gene, 130:47, 1993 : PubMed
The cistronic organization of the bph locus, encoding a biphenyl/polychlorinated biphenyl (PCB) degradation pathway in Pseudomonas sp. LB400, has been elucidated. Seven structural genes, encoding biphenyl dioxygenase (bphA1A2A3A4), biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (bphB), biphenyl-2,3-diol-1,2-dioxygenase (bphC) and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (bphD), have been located. The complete sequences of bphB, bphC and bphD are reported. Taken together with the data of Erickson and Mondello [J. Bacteriol. 174 (1992) 2903-2912], Pseudomonas sp. LB400 is now the first strain for which the sequences of all genes encoding the catabolism from biphenyls to benzoates have been determined. Comparisons of the deduced amino acid (aa) sequences of BphB, BphC and BphD with those of related proteins led to predictions about catalytically important aa residues. Six Bph have been detected and identified. Five of them could be obtained as the most abundant proteins when their genes were expressed in Escherichia coli.