Chromobacterium viscosum Chromobacterium viscosum lipase has a sequence identical to Pseudomonas glumae lipase which is also called Pseudomonas gladioli or Burkholderia glumae. The psegl-lipas was replaced by burgl-lipas; Burkholderia plantarii; Pseudarthrobacter phenanthrenivorans (Arthrobacter phenanthrenivorans)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Betaproteobacteria: NE > Burkholderiales: NE > Burkholderiaceae: NE > Burkholderia: NE > Burkholderia glumae: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Burkholderia glumae PG1: N, E.
Burkholderia glumae BGR1: N, E.
Burkholderia plantarii: N, E.
Arthrobacter phenanthrenivorans: N, E.
Pseudarthrobacter phenanthrenivorans: N, E.
Arthrobacter phenanthrenivorans Sphe3: N, E.
Molecular evidence
Database
No mutation 4 structures(e.g. : 1CVL, 1QGE, 1TAH... more)(less) 1CVL: Chromobacterium viscosum lipase, 1QGE: Pseudomonas glumae lipase: new crystal, 1TAH: Pseudomonas glumae lipase, 2ES4: Crystal structure of the Burkholderia glumae lipase-specific foldase in complex with its cognate lipase No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MVRSMRSRVAARAVAWALAVMPLAGAAGLTMAASPAAVAADTYAATRYPV ILVHGLAGTDKFANVVDYWYGIQSDLQSHGAKVYVANLSGFQSDDGPNGR GEQLLAYVKQVLAATGATKVNLIGHSQGGLTSRYVAAVAPQLVASVTTIG TPHRGSEFADFVQDVLKTDPTGLSSTVIAAFVNVFGTLVSSSHNTDQDAL AALRTLTTAQTATYNRNFPSAGLGAPGSCQTGAATETVGGSQHLLYSWGG TAIQPTSTVLGVTGATDTSTGTLDVANVTDPSTLALLATGAVMINRASGQ NDGLVSRCSSLFGQVISTSYHWNHLDEINQLLGVRGANAEDPVAVIRTHV NRLKLQGV
Pseudomonas glumae PG1 is able to secrete lipase into the extracellular medium. The lipase is produced as a precursor protein, with an N-terminal signal sequence. A second open reading frame (ORF) was found immediately downstream of the lipase structural gene, lipA, a situation found for the lipases of some other Pseudomonas species. Inactivation of this ORF resulted in a lipase-negative phenotype, indicating its importance in the production of active extracellular lipase. The ORF, lipB, potentially encodes a protein of 353-amino-acid residues, having a hydrophobic N-terminal (amino acids 1 to 90) and a hydrophilic C-terminal part. As a first step in determining the role of LipB, its subcellular location was determined. The protein was found to fractionate with the inner membranes. The expression of fusions of lipB fragments with phoA revealed an N(in)-C(out) topology for the LipB protein, which was confirmed by protease accessibility studies on EDTA-permeabilized cells and on inverted inner membrane vesicles. These and other results indicate that most of the LipB polypeptide is located in the periplasm and anchored to the inner membrane by an N-terminal transmembrane helix, located between amino acids 19 and 40.
        
Title: The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate Noble ME, Cleasby A, Johnson LN, Egmond MR, Frenken LG Ref: FEBS Letters, 331:123, 1993 : PubMed
The family of lipases (triacylglycerol-acyl-hydrolases EC 3.1.1.3) constitutes an interesting class of enzymes because of their ability to interact with lipid-water interfaces, their wide range of substrate specificities, and their potential industrial applications. Here we report the first crystal structure of a bacterial lipase, from Pseudomonas glumae. The structure is formed from three domains, the largest of which contains a subset of the alpha/beta hydrolase fold and a calcium site. Asp263, the acidic residue in the catalytic triad, has previously been mutated into an alanine with only a modest reduction in activity.
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications.
        
13 lessTitle: AOT/isooctane reverse micelles with a microaqueous core act as protective shells for enhancing the thermal stability of Chromobacterium viscosum lipase Hong SC, Park KM, Son YH, Jung HS, Kim K, Choi SJ, Chang PS Ref: Food Chem, 179:263, 2015 : PubMed
According to the different environmental systems for lipase reactions, changes in thermal stability were investigated by employing the Chromobacterium viscosum lipase and a two-step series-type deactivation model. The half-life (6.81 h) of the lipase entrapped in reverse micelles at 70 degrees C was 9.87- and 14.80-fold longer than that in glycerol pool or in aqueous buffer. The deactivation constants for the first and second step (k1 and k2) at all temperatures drastically decreased when the lipase was entrapped in reverse micelles. In particular, k1 (3.84 h(-1)) at 70 degrees C in reverse micelles was 1.57-fold lower than that in aqueous buffer (6.03 h(-1)). Based on the fluorescence spectrometry, the amount of excited forms of tryptophan and tyrosine increased markedly during the thermal-treatment in aqueous buffer, whereas no significant fluctuation was noted in the reversed micellar system. These results indicated that the encapsulation in reverse micelles could be favorable for preventing the enzyme from heat-induced denaturation.
        
Title: Stabilization of Chromobacterium viscosum Lipase (CVL) Against Ultrasound Inactivation by the Pretreatment with Polyethylene Glycol (PEG) Talukder MM, Shiong SC Ref: Appl Biochem Biotechnol, 177:1742, 2015 : PubMed
Although ultrasound has been used to accelerate many enzymatic reactions, the low stability of enzymes in such a system still remains a critical issue, limiting its industrial application. Here, we have reported that polyethylene glycol (PEG) pretreatment stabilized Chromobacterium viscosum lipase (CVL) in ultrasound-assisted water-isooctane emulsion. PEGs of different molecular weights and concentrations were used to pretreat CVL, and the pretreated lipase activities for olive oil hydrolysis were investigated at different ultrasonic powers. The best result was attained with PEG400 at 100 mg/ml for a lipase concentration of 0.02 mg/ml and an ultrasonic power of 106 W. The half-life time of PEG400-treated lipase at 106 W was 54 min, a 27-fold higher than that attained using untreated lipase. Circular dichroism (CD) spectra suggested that PEG increased the rigidity of CVL structure, which favored the lipase stability against ultrasound inactivation. These results have important implications for the exploitation of ultrasound in biocatalytic process.
The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of alpha-lytic protease and subtilisin are the best known representatives. Steric chaperones play a key role in conferring kinetic stability to proteins. However, until present there was no solid experimental evidence that Lif-dependent lipases are kinetically trapped enzymes. By combining thermal denaturation studies with proteolytic resistance experiments and the description of distinct folding intermediates, we demonstrate that the native lipase has a kinetically stable conformation. We show that a newly discovered molten globule-like conformation has distinct properties that clearly differ from those of the near-native intermediate state. The folding fingerprint of Lif-dependent lipases is put in the context of the protease-prodomain system and the comparison reveals clear differences that render the lipase-Lif systems unique. Limited proteolysis unveils structural differences between the near-native intermediate and the native conformation and sets the stage to shed light onto the nature of the kinetic barrier.
        
Title: Alginate-chaperoned facile refolding of Chromobacterium viscosum lipase Mondal K, Bohidar HB, Roy RP, Gupta MN Ref: Biochimica & Biophysica Acta, 1764:877, 2006 : PubMed
Urea denatured lipase from Chromobacterium viscosum lipase could be refolded by addition of alginate with high guluronic acid content. The refolded molecule could be recovered by affinity precipitation. This approach resulted in recovery of 80% (of original activity) as compared to classical dilution method which gave only 21% activity recovery. Dynamic light scattering showed that binding required about 45 min and activity data obtained from affinity precipitation experiments indicated that refolding was almost instantaneous after binding. Circular dichroism (CD) and fluorescence data showed that refolded molecule was identical to the native molecule. It also showed that refolding takes place at the binding stage and not at the precipitation stage. Preliminary studies showed that the refolding strategy worked equally well with lipases from wheat germ and porcine pancreas.
Secretion via the type II secretion pathway in Gram-negative bacteria often relies crucially on steric chaperones in the periplasm. Here, we report the crystal structure of the soluble form of a lipase-specific foldase (Lif) from Burkholderia glumae in complex with its cognate lipase. The structure reveals how Lif uses a novel alpha-helical scaffold to embrace lipase, thereby creating an unusually extensive folding platform.
Bacterial lipases that are secreted via the type II secretion pathway require a lipase-specific foldase in order to obtain their native and biologically active conformation in the periplasmic space. The lipase-foldase complex from Burkholderia glumae (319 and 333 residues, respectively) was crystallized in two crystal forms. One crystal form belongs to space group P3(1)21 (P3(2)21), with unit-cell parameters a = b = 122.3, c = 98.2 A. A procedure is presented which improved the diffraction of these crystals from approximately 5 to 2.95 A. For the second crystal form, which belonged to space group C2 with unit-cell parameters a = 183.0, b = 75.7, c = 116.6 A, X-ray data were collected to 1.85 A.
        
Title: A comparison of lipase-catalysed ester and lactone synthesis in low-water systems: analysis of optimum water activity Alston MJ, Freedman RB Ref: Biotechnol Bioeng, 77:641, 2002 : PubMed
We investigated the effects of the lyophilisation medium (enzyme plus buffer salt and additives) and of water activity (a(w)) on the catalytic properties of lipase from Chromobacterium viscosum (lipase CV) in organic solvents; catalysis of ester and lactone synthesis were compared and, despite the similarities of the reactive groups involved in these reactions, some interesting differences were observed. Including 2-[N-morpholino]ethanesulfonic acid (MES) buffer in the lyophilisation medium of lipase CV increased its catalytic activity in transesterification and lactonisation, although the buffer salt requirement for maximal activity differed between the two reactions. Sorbitol, glucose, lactose, 18-crown-6 (crown ether 18-C-6), beta-cyclodextrin and bovine serum albumin were employed as alternative additives in the transesterification reaction, but were not as effective as MES buffer. Salt hydrates were used to investigate the effect of a(w) on esterification and lactonisation reactions catalysed by lipase CV. The maximum rate of hexadecanolide synthesis in toluene occurred at a(w) = 0.48. The optimum a(w) for the transesterification reaction in heptane/alcohol mixtures depended on the alcohol substrate employed (1-heptanol, 2-heptanol, or 3-methyl-3-hexanol) but not on the acyl donor (p-NP acetate or caprylate). The optimum a(w) values for both reactions were unchanged when a common solvent system (toluene/1-heptanol) was employed, indicating that the dependence of enzyme activity on a(w) is an intrinsic property of the enzyme-catalysed reaction and not a function of the solvent or other additives.
        
Title: Molecular basis for enantioselectivity of lipase from Chromobacterium viscosum toward the diesters of 2,3-dihydro-3-(4'-hydroxyphenyl)-1,1,3-trimethyl-1H-inden-5-ol Gascoyne DG, Finkbeiner HL, Chan KP, Gordon JL, Stewart KR, Kazlauskas RJ Ref: J Org Chem, 66:3041, 2001 : PubMed
2,3-Dihydro-3-(4'-hydroxyphenyl)-1,1,3-trimethyl-1H-inden-5-ol, 1, is a chiral bisphenol useful for preparation of polymers. Previous screening of commercial hydrolases identified lipase from Chromobacterium viscosum (CVL) as a highly regio- and enantioselective catalyst for hydrolysis of diesters of 1. The regioselectivity was > or =30:1 favoring the ester at the 5-position, while the enantioselectivity varied with acyl chain length, showing the highest enantioselectivity (E = 48 +/- 20 S) for the dibutanoate ester. In this paper, we use a combination of nonsymmetrical diesters and computer modeling to identify that the remote ester group controls the enantioselectivity. First, we prepared nonsymmetrical diesters of (+/-)-1 using another regioselective, but nonenantioselective, reaction. Lipase from Candida rugosa (CRL) showed the opposite regioselectivity (>30:1), allowing removal of the ester at the 4'-position (the remote ester in the CVL-catalyzed reaction). Regioselective hydrolysis of (+/-)-1-dibutanoate (150 g) gave (+/-)-1-5-dibutanoate (89 g, 71% yield). Acylation gave nonsymmetrical diesters that varied at the 4'-position. With no ester at the 4'-position, CVL showed no enantioselectivity, while hindered esters (3,3-dimethylbutanoate) reacted 20 times more slowly, but retained enantioselectivity (E = 22). These results indicate that the remote ester group can control the enantioselectivity. Computer modeling confirmed these results and provided molecular details. A model of a phosphonate transition state analogue fit easily in the active site of the open conformation of CVL. A large hydrophobic pocket tilts to one side above the catalytic machinery. The tilt permits the remote ester at the 4'-position of only the (S)-enantiomer to bind in this pocket. The butanoate ester fits and fills this pocket and shows high enantioselectivity. Both smaller and larger ester groups show low enantioselectivity because small ester groups cannot fill this pocket, while longer ester groups extend beyond the pocket. An improved large-scale resolution of 1-dibutanoate with CVL gave (R)-(+)-1-dibutanoate (269 g, 47% yield, 92% ee) and (S)-(-)-1-4'-monobutanoate (245 g, 52% yield, 89% ee). Methanolysis yielded (R)-(+)-1 (169 g, 40% overall yield, >97% ee) and (S)-(-)-1 (122 g, 36% overall yield, >96% ee).
        
Title: Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution Lang D, Hofmann B, Haalck L, Hecht HJ, Spener F, Schmid RD Ref: Journal Molecular Biology, 259:704, 1996 : PubMed
The crystal structure of a lipase from the bacterium Chromobacterium viscosum ATCC 6918 (CVL) has been determined by isomorphous replacement and refined at 1.6 angstroms resolution to an R-factor of 17.8%. The lipase has the overall topology of an alpha/beta type protein, which was also found for previously determined lipase structures. The catalytic triad of the active center consists of the residues Ser87, Asp263 and His285. These residues are not exposed to the solvent, but a narrow channel connects them with the molecular surface. This conformation is very similar to the previously reported closed conformation of Pseudomonas glumae lipase (PGL), but superposition of the two lipase structures reveals several conformational differences. r.m.s. deviations greater than 2 angstroms are found for the C alpha-atoms of the polypeptide chains from His15 to Asp28, from Leu49 to Ser54 and from Lys128 to Gln158. Compared to the PGL structure in the CVL structure, three alpha-helical fragments are shorter, one beta-strand is longer and an additional antiparallel beta-sheet is found. In contrast to PGL, CVL displays an oxyanion hole, which is stabilized by the amide nitrogen atoms of Leu17 and Gln88, and a cis-peptide bond between Gln291 and Leu292. CVL contains a Ca2+, like the PGL, which is coordinated by four oxygen atoms from the protein and two water molecules.
1,2(2,3)-Diradylglycero O-(p-nitrophenyl) n-hexylphosphonates were synthesized, with the diradylglycerol moiety being di-O-octylglycerol, 1-O-hexadecyl-2-O-pyrenedecanylglycerol, or 1-O-octyl-2-oleoyl-glycerol, and tested for their ability to inactivate lipases from Chromobacterium viscosum (CVL) and Rhizopus oryzae (ROL). The experimental data indicate the formation of stable, covalent 1:1 enzyme-inhibitor adducts with the di-O-alkylglycero phosphonates. The differences in reactivity of diastereomeric phosphonates with opposite configuration at the glycerol backbone was less expressed with both enzymes tested as compared to the influence of the stereochemistry at the phosphorus. Both lipases exhibited the same preference for the chirality at the phosphorus that was independent from the absolute configuration at the glycerol backbone. However, with CVL and ROL the inhibitors with the active site serine-directed phosphonate linked at position sn-1 of the glycerol moiety reacted significantly faster than the corresponding sn-3 analogs, reflecting the sn-1 stereopreference of the enzymes towards triacylglycerol analogs with a sn-2 O-alkyl substituent. In contrast, the phosphonates based on the 1-O-octyl-2-oleoylglycerol did not significantly inactivate CVL. Unexpectedly, these substances were hydrolyzed in the presence of lipase.
        
Title: Lipase from Chromobacterium viscosum: biochemical characterization indicating homology to the lipase from Pseudomonas glumae Taipa MA, Liebeton K, Costa JV, Cabral JM, Jaeger KE Ref: Biochimica & Biophysica Acta, 1256:396, 1995 : PubMed
Previous purification of a commercial lipolytic preparation from Chromobacterium viscosum using gel filtration chromatography yielded two enzymatically active fractions, named lipases A and B. Characterization of these fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that lipase A consisted of a high molecular weight aggregate of lipase protein with lipopolysaccharides. This complex could be dissociated by treatment with EDTA-Tris buffer containing the non-ionic detergent n-octyl-beta-D-glucopyranoside and subsequent isoelectric focusing in an agarose gel containing the same detergent. Both lipases A and B revealed a major peak corresponding to an isoelectric point of 7.1. SDS-PAGE analysis of lipases A and B after purification by gel filtration or by IEF revealed one major protein band of M(r) of 33 K. Determination of N-terminal amino acid sequences confirmed that both fractions A and B contained the same lipase protein. Furthermore, the N-terminal amino acid sequence of the C. viscosum lipase was identical to the one of Pseudomonas glumae lipase.
Pseudomonas glumae PG1 is able to secrete lipase into the extracellular medium. The lipase is produced as a precursor protein, with an N-terminal signal sequence. A second open reading frame (ORF) was found immediately downstream of the lipase structural gene, lipA, a situation found for the lipases of some other Pseudomonas species. Inactivation of this ORF resulted in a lipase-negative phenotype, indicating its importance in the production of active extracellular lipase. The ORF, lipB, potentially encodes a protein of 353-amino-acid residues, having a hydrophobic N-terminal (amino acids 1 to 90) and a hydrophilic C-terminal part. As a first step in determining the role of LipB, its subcellular location was determined. The protein was found to fractionate with the inner membranes. The expression of fusions of lipB fragments with phoA revealed an N(in)-C(out) topology for the LipB protein, which was confirmed by protease accessibility studies on EDTA-permeabilized cells and on inverted inner membrane vesicles. These and other results indicate that most of the LipB polypeptide is located in the periplasm and anchored to the inner membrane by an N-terminal transmembrane helix, located between amino acids 19 and 40.
        
Title: Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae Frenken LG, de Groot A, Tommassen J, Verrips CT Ref: Molecular Microbiology, 9:591, 1993 : PubMed
The LipB protein of Pseudomonas glumae is essential for the production of active extracellular lipase encoded by the lipA gene. When lipase is overproduced in P. glumae in the absence of a functional lipB gene, the enzyme accumulates intracellularly in an inactive conformation. Heterologous expression of the lipase in Pseudomonas aeruginosa, Bacillus subtilis and Escherichia coli indicated that LipB is not directly involved in the translocation of the lipase across the inner or outer membrane. However, the presence of LipB was essential for obtaining active lipase and had a profound influence on the stability of the protein to proteolytic degradation. Inactive lipase, produced in the absence of LipB could be activated in vitro by unfolding and refolding, which demonstrates that LipB activity is not responsible for an essential covalent modification of the enzyme. We propose that LipB is a lipase-specific foldase. Furthermore, proper folding of the lipase in the periplasm appears to be essential for Xcp-mediated translocation across the outer membrane.
        
Title: The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate Noble ME, Cleasby A, Johnson LN, Egmond MR, Frenken LG Ref: FEBS Letters, 331:123, 1993 : PubMed
The family of lipases (triacylglycerol-acyl-hydrolases EC 3.1.1.3) constitutes an interesting class of enzymes because of their ability to interact with lipid-water interfaces, their wide range of substrate specificities, and their potential industrial applications. Here we report the first crystal structure of a bacterial lipase, from Pseudomonas glumae. The structure is formed from three domains, the largest of which contains a subset of the alpha/beta hydrolase fold and a calcium site. Asp263, the acidic residue in the catalytic triad, has previously been mutated into an alanine with only a modest reduction in activity.
        
Title: Crystallization and preliminary X-ray study of a lipase from Pseudomonas glumae Cleasby A, Garman E, Egmond MR, Batenburg M Ref: Journal of Molecular Biology, 224:281, 1992 : PubMed
Lipase from Pseudomonas glumae has been purified and crystallized in two forms, using the hanging drop method of vapour diffusion at 4 degrees C and 15 degrees C. Both forms grew at pH 9.0 from 0.1 M-Tris buffer in the presence of 10% (v/v) acetone. Form 1 was crystallized from 27 to 29% polyethylene glycol in the presence of less than 0.5% (v/v) n-dodecyl-beta-D-glucopyranoside. Form 2 was grown from 17 to 19% ammonium sulphate in the presence of 1% n-octyl-beta-D-glucopyranoside. Form 1 is orthorhombic with space group P2(1)2(1)2(1), and cell dimensions of a = 158.1 A, b = 158.6 A, c = 63.4 A, Form 2 is tetragonal with space group P4(1)2(1)2 (or P4(3)2(1)2) and cell dimensions of a = 89.3 A, c = 180.4 A. Form 1 probably has four molecules per asymmetric unit and diffracts to at least 2.5 A. Form 2 has two molecules per asymmetric unit and diffracts to at least 3.0 A.
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications.