(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Geobacillus: NE > Geobacillus thermoleovorans group: NE > Geobacillus thermocatenulatus: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Geobacillus thermocatenulatus: N, E.
Geobacillus sp. BCO2: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MMKGCRVMVVLLGLWFVFGLSVPGGRTEAASPRANDAPIVLLHGFTGWGR EEMLGFKYWGGVRGDIEQWLNDNGYRTYTLAVGPLSSNWDRACEAYAQLV GGTVDYGAAHAAKHGHARFGRTYPGLLPELKRGGRVHIIAHSQGGQTARM LVSLLENGSQEEREYAKAHNVSLSPLFEGGHHFVLSVTTIATPHDGTTLV NMVDFTDRFFDLQKAVLKAAAVASNVPYTSQVYDFKLDQWGLRRQPGESF DHYFERLKRSPVWTSTDTARYDLSIPGAEKLNQWVQASPNTYYLSFSTER THRGALTGNYYPELGMNAFSAVVCAPFLGSYRNEALGIDDRWLENDGIVN TVSMNGPKRGSSDRIVPYDGTLKKGVWNDMGTCNVDHLEVIGVDPNPSFD IRAFYLRLAEQLASLRP
Enhancement, control, and tuning of hydrolytic activity and specificity of lipases are major goals for the industry. Thermoalkaliphilic lipases from the I.5 family, with their native advantages such as high thermostability and tolerance to alkaline pHs, are a target for biotechnological applications. Although several strategies have been applied to increase lipases activity, the enhancement through protein engineering without compromising other capabilities is still elusive. Lipases from the I.5 family suffer a unique and delicate double lid restructuration to transition from a closed and inactive state to their open and enzymatically active conformation. In order to increase the activity of the wild type Geobacillus thermocatenulatus lipase 2 (BTL2) we rationally designed, based on its tridimensional structure, a mutant (ccBTL2) capable of forming a disulfide bond to lock the open state. ccBTL2 was generated replacing A191 and F206 to cysteine residues while both wild type C64 and C295 were mutated to serine. A covalently immobilized ccBTL2 showed a 3.5-fold increment in esterase activity with 0.1% Triton X-100 (2336 IU mg(-1)) and up to 6.0-fold higher with 0.01% CTAB (778 IU mg(-1)), both in the presence of oxidizing sulfhydryl agents, when compared to BTL2. The remarkable and industrially desired features of BTL2 such as optimal alkaliphilic pH and high thermal stability were not affected. The designed disulfide bond also conferred reversibility to the enhancement, as the increment on activity observed for ccBTL2 was controlled by redox pretreatments. MD simulations suggested that the most stable conformation for ccBTL2 (with the disulfide bond formed) was, as we predicted, similar to the open and active conformation of this lipase.
Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3) are one of the highest value commercial enzymes as they have potential applications in biotechnology for detergents, food, pharmaceuticals, leather, textiles, cosmetics, and paper industries; and are currently receiving considerable attention because of their potential applications in biotechnology. Bacillus thermocatenulatus Lipase 2 (BTL2) is one of the most important research targets, because of its potential industrial applications. In this study, the effect of substitution Phe17 with Ser in mutated BTL2 lipase, which conserved pentapeptide ((112)Ala-His-Ser-Gln-Gly(116)) was replaced with similar sequences ((207)Gly-Glu-Ser-Ala-Gly(211)) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. Docking results confirmed the mutated lipase to be better than the chimeric lipase. So, cloning was conducted, and the mutated and chimeric btl2 genes were expressed in Escherichia coli, and then the enzymes were purified by anion exchange chromatography. The mutation increased lipase lipolytic activity against most of the applied substrates, with the exception of tributyrin when compared with chimeric lipase. Further, the mutated lipase exhibited higher activity than the chimeric lipase at all temperatures. Optimum pH of the mutated lipase was obtained at pH 9.5, which was more than the chimeric one. Enzyme activity of the mutated lipase in the presence of organic solvents, detergents, and metal ions was also improved than the chimeric lipase.
A lipase was immobilized on transparent agarose microspheres and genetically engineered to specifically anchor photochromic molecules into its catalytic site. Several combinations of azobenzene and spiropyran groups were conjugated to cysteines introduced at different positions near the active center. Light modulated the catalytic properties of the resulting solid bioconjugates, and such modulation depended on both the nature of the photochromic compound and the anchoring position. Covalent anchoring of azobenzene derivatives to the residue 295 of the lipase 2 from Bacillus thermocathenolatus triggered lipase preference for the S isomer under UV light, whereas visible light promoted preference for the R isomer. Molecular dynamics simulations indicate that conjugating photochromic compounds into the catalytic cavity allows manipulating the steric hindrance and binding energy of the substrates, leading to an enantioselective molecular fit in certain cases. Using this approach, we report for the first time the control of enzyme properties using light in the solid phase.
        
16 lessTitle: Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments Shehata M, Timucin E, Venturini A, Sezerman OU Ref: J Mol Model, 26:122, 2020 : PubMed
Bacillus thermocatenulatus lipase (BTL2), a member of the isolated lipase family known as thermoalkalophilic lipases, carries potential for industrial applications owing to its ability to catalyze versatile reactions under extreme conditions. This study investigates the molecular effects of distinct solvents on the stability of BTL2 at different temperatures, aiming to contribute to lipase use in industrial applications. Initially, molecular dynamic (MD) simulations were carried out to address for the molecular impacts of distinct solvents on the structural stability of BTL2 at different temperatures. Two lipase conformations representing the active and inactive forms were simulated in 5 solvents including water, ethanol, methanol, cyclohexane, and toluene. Low temperature simulations showed that polar solvents led to enhanced lid fluctuations compared with non-polar solvents reflecting a more dynamic equilibrium between active and inactive lipase conformations in polar solvents including water, while the overall structure of the lipase in both forms became more rigid in non-polar solvents than they were in polar solvent. Notably, the native lipase fold was maintained in non-polar solvents even at high temperatures, indicating an enhancement of lipase's thermostability in non-polar organic solvents. Next, we conducted experiments for which BTL2 was expressed in a heterologous host and purified to homogeneity, and its thermostability in different solvents was assessed. Parallel to the computational findings, experimental results suggested that non-polar organic solvents contributed to BTL2's thermostability at concentrations as high as 70% (v/v). Altogether, this study provides beneficial insights to the lipase use under extreme conditions. Graphical Abstract.
Enhancement, control, and tuning of hydrolytic activity and specificity of lipases are major goals for the industry. Thermoalkaliphilic lipases from the I.5 family, with their native advantages such as high thermostability and tolerance to alkaline pHs, are a target for biotechnological applications. Although several strategies have been applied to increase lipases activity, the enhancement through protein engineering without compromising other capabilities is still elusive. Lipases from the I.5 family suffer a unique and delicate double lid restructuration to transition from a closed and inactive state to their open and enzymatically active conformation. In order to increase the activity of the wild type Geobacillus thermocatenulatus lipase 2 (BTL2) we rationally designed, based on its tridimensional structure, a mutant (ccBTL2) capable of forming a disulfide bond to lock the open state. ccBTL2 was generated replacing A191 and F206 to cysteine residues while both wild type C64 and C295 were mutated to serine. A covalently immobilized ccBTL2 showed a 3.5-fold increment in esterase activity with 0.1% Triton X-100 (2336 IU mg(-1)) and up to 6.0-fold higher with 0.01% CTAB (778 IU mg(-1)), both in the presence of oxidizing sulfhydryl agents, when compared to BTL2. The remarkable and industrially desired features of BTL2 such as optimal alkaliphilic pH and high thermal stability were not affected. The designed disulfide bond also conferred reversibility to the enhancement, as the increment on activity observed for ccBTL2 was controlled by redox pretreatments. MD simulations suggested that the most stable conformation for ccBTL2 (with the disulfide bond formed) was, as we predicted, similar to the open and active conformation of this lipase.
        
Title: Investigating the structural properties of the active conformation BTL2 of a lipase from Geobacillus thermocatenulatus in toluene using molecular dynamic simulations and engineering BTL2 via in-silico mutation Yenenler A, Venturini A, Burduroglu HC, Sezerman OU Ref: J Mol Model, 24:229, 2018 : PubMed
The discovery or development of thermoalkalophilic lipases that show high levels of catalytic activity in organic solvents would have important industrial ramifications. However, this goal is yet to be achieved because organic solvents induce structural changes in lipases that suppress their catalytic abilities. A deep understanding of these structural changes to lipases in the presence of organic solvents is required before strategies can be devised to stop them from occurring. In this work, we investigated the effects of an organic reaction medium, toluene, on the structure of the Bacillus thermocatenulatus lipase BTL2 using MD simulation. The main aims were to identify the regions of the protein that are particularly sensitive to the presence of an organic solvent, and how the presence of a hydrophobic medium affects the overall stability of the enzyme. Upon analyzing how the behavior of the enzyme differed in aqueous and hydrophobic media, it was found that many significant zones of the protein suffer in the presence of an organic solvent, which increases the rigidity of the system. This was readily apparent when we investigated important noncovalent interactions (salt bridges) and probed how distances between the atoms of the catalytic triad Ser114, Asp318, and His359 change in the presence of toluene. Moreover, the high tendency for the system to destabilize in toluene was explained by the results of FoldX calculations. Calculations showed that the addition of a small amount of water to the hydrophobic reaction environment should restore the required flexibility of BTL2. The insights gained from the analysis of our simulations allowed us to propose a modification of BTL2, the G116P mutation, that should result in the structural behavior of BTL2 in organic solvent being closer to that of BTL2 in water.
Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3) are one of the highest value commercial enzymes as they have potential applications in biotechnology for detergents, food, pharmaceuticals, leather, textiles, cosmetics, and paper industries; and are currently receiving considerable attention because of their potential applications in biotechnology. Bacillus thermocatenulatus Lipase 2 (BTL2) is one of the most important research targets, because of its potential industrial applications. In this study, the effect of substitution Phe17 with Ser in mutated BTL2 lipase, which conserved pentapeptide ((112)Ala-His-Ser-Gln-Gly(116)) was replaced with similar sequences ((207)Gly-Glu-Ser-Ala-Gly(211)) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. Docking results confirmed the mutated lipase to be better than the chimeric lipase. So, cloning was conducted, and the mutated and chimeric btl2 genes were expressed in Escherichia coli, and then the enzymes were purified by anion exchange chromatography. The mutation increased lipase lipolytic activity against most of the applied substrates, with the exception of tributyrin when compared with chimeric lipase. Further, the mutated lipase exhibited higher activity than the chimeric lipase at all temperatures. Optimum pH of the mutated lipase was obtained at pH 9.5, which was more than the chimeric one. Enzyme activity of the mutated lipase in the presence of organic solvents, detergents, and metal ions was also improved than the chimeric lipase.
A unique zinc domain found in all of the identified members of the lipase family I.5 is surrounded by two conserved tryptophans (W61 and W212). In this study, we investigated the role of these hydrophobic residues in thermostability and thermoactivity of the lipase from Bacillus thermocatenulatus (BTL2) taken as the representative of the family. Circular dichroism spectroscopy revealed that the secondary structure of BTL2 is conserved by the tryptophan mutations (W61A, W212A, and W61A/W212A), and that W61 is located in a more rigid and less solvent exposed region than is W212. Thermal denaturation and optimal activity analyses pointed out that zinc induces thermostability and thermoactivity of BTL2, in which both tryptophans W61 and W212 play contributing roles. Molecular explanations describing the roles of these tryptophans were pursued by X-ray crystallography of the open form of the W61A mutant and molecular dynamics simulations which highlighted a critical function for W212 in zinc binding to the coordination site. This study reflects the potential use of hydrophobic amino acids in vicinity of metal coordination sites in lipase biocatalysts design. Proteins 2016; 84:129-142. (c) 2015 Wiley Periodicals, Inc.
Bacillus thermocatenulatus lipase 2 (BTL2) is a promising industrial enzyme used in biodiesel production. Although BTL2 has high thermostability and good resistance to organic solvents, the activity of BTL2 is suboptimal for industrial processes. To improve BTL2 activity, we engineered BTL2 lipase by modulating hydrophobicity of its lid domain. Through site-directed mutagenesis, we constructed three mutants, namely Y225F+S232A, S232A+T236V and Q185L, to cover all uncharged hydrophilic amino acids within the lid domain. Activities of these mutants were characterized. Our findings suggest that one mutant (Y225F+S232A) showed approximately 35% activity increase in catalyzing heterogeneous hydrolytic reactions relevant for industrial applications. A mathematical framework was established to account for different molecular events that contribute to the observed apparent catalytic activities. Increases in hydrophobicity of lid domains were associated with increased interfacial adsorption of lipases and lower molecular enzymatic activities. The measured apparent activities of lipases include contributions from both events. Lid hydrophobicity can thus result in different changes in lipase activities depending on the mutation site. Our work demonstrates the feasibility of increasing BTL2 activity by modulating the hydrophobicity of lid domains and provides some guidelines for further improving BTL2 activity.
        
Title: Zinc Modulates Self-Assembly of Bacillus thermocatenulatus Lipase Timucin E, Sezerman OU Ref: Biochemistry, 54:3901, 2015 : PubMed
Thermoalkalophilic lipases are prone to aggregation from their dimer interface to which structural zinc is very closely located. Structural zinc sites have been shown to induce protein aggregation, but the interaction between zinc and aggregation tendency in thermoalkalophilic lipases remains elusive. Here we delineate the interplay between zinc and aggregation of the lipase from Bacillus thermocatenulatus (BTL2), which is taken to be a representative of thermoalkalophilic lipase. Results showed that zinc removal disrupted the BTL2 dimer, leading to monomer formation and reduced thermostability manifesting as a link between zinc and dimerization that leads to thermostability, while zinc addition induced aggregation. Biochemical and kinetic characterizations of zinc-induced aggregates showed that the aggregates obtained from the early and late stages of aggregation had differential characteristics. In the early stages, the aggregates were soluble and possessed native-like structures, while in the late stages, the aggregates became insoluble and showed fibrillar characteristics with binding affinities for Congo red and thioflavin T. The impact of temperature on zinc-induced aggregation was further investigated, and it was found that the native-like early aggregates could completely dissociate into functional lipase forms at high temperatures while dissociation of the late aggregates was limited. To this end, we report that the zinc-induced aggregation of BTL2 can be reversed by temperature switches and initiated by ordered aggregates in the early stages that gain fibrillar-like features over time. Insights revealed by this work contributes to the knowledge of aggregation mechanisms that exist in thermophilic proteins, reflecting the potential use of metal addition and/or removal to fine-tune aggregation tendency.
A lipase was immobilized on transparent agarose microspheres and genetically engineered to specifically anchor photochromic molecules into its catalytic site. Several combinations of azobenzene and spiropyran groups were conjugated to cysteines introduced at different positions near the active center. Light modulated the catalytic properties of the resulting solid bioconjugates, and such modulation depended on both the nature of the photochromic compound and the anchoring position. Covalent anchoring of azobenzene derivatives to the residue 295 of the lipase 2 from Bacillus thermocathenolatus triggered lipase preference for the S isomer under UV light, whereas visible light promoted preference for the R isomer. Molecular dynamics simulations indicate that conjugating photochromic compounds into the catalytic cavity allows manipulating the steric hindrance and binding energy of the substrates, leading to an enantioselective molecular fit in certain cases. Using this approach, we report for the first time the control of enzyme properties using light in the solid phase.
Lipases from Bacillus thermocatenulatus are a member of superfamily of alpha/beta hydrolase, but there are structural differences between them. In this work, we focused on the alpha5 helix of B. thermocatenulatus lipase (BTL2) which is absent in canonical alpha/beta hydrolase fold. In silico study showed that the alpha5 helix is a region that causes disorder in BTL2 protein. So, the alpha5 helix (residues 131 to 150) has been deleted from the B. thermocatenulatus lipase gene (BTL2) and the remain (Deltaalpha5-BTL2) has been expressed in Pichia pastoris yeast. The alpha5 deletion results in increase of enzyme-specific activity in the presence of tributyrin, tricaproin, tricaprylin, tricaprin, trilaurin, and olive oil (C18) substrates by 1.4-, 1.7-, 2.0-, 1.2-, 1.75-, and 1.95-fold, respectively. Also, deletion leads to increase in enzyme activity in different temperatures and pHs, whereas it did not significantly affect on enzyme activity in the presence of organic solvents, metal ions, and detergents.
        
Title: Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex Durmaz E, Kuyucak S, Sezerman UO Ref: Protein Engineering Des Sel, 26:325, 2013 : PubMed
In this study, rational design for Bacillus thermocatenulatus lipase (BTL2) was carried out to lower the activation barrier for hydrolysis of short-chain substrates. In this design, we used computational models for the enzyme-substrate (ES) complexes of tributyrin (C4) and tricaprylin (C8), which were generated through docking and molecular dynamics (MD) simulations. These ES complexes were employed in steered MD (SMD) simulations with Jarzynski's equality to estimate their relative binding free energies. Potential mutation sites for modifying the chain-length selectivity of BTL2 were found by inspecting the SMD trajectories and fine-tuning the volume and hydrophobicity of the cleft. Seven mutations (F17A, L57F, V175A, V175F, I320A, I320F and L360F) were performed to cover three binding pockets for sn-1, sn-2 and sn-3 acyl chains. The relative binding free energies of the mutant ES complexes formed by C4 and C8 ligands were calculated similarly. The experimental routines of protein engineering including site-directed mutagenesis, heterologous protein expression and purification were performed for all lipases. Steady-state specific activities towards C4 and C8 were determined for wild-type and mutant lipases, which gave an estimate of the relative change in the binding free energy of transition state complex (ES). The chain-length selectivity of mutants was determined from the relative changes in the activation barrier of hydrolysis of C4 and C8 triacylglycerol with respect to wild-type using computational and experimental findings. The most promising mutant for C4 over C8 preference was found to be L360F. We suggest that L360F may be at a critical position to lower the activation barrier for C4 and elevate it for C8 hydrolysis.
Lipases are one of the highest value commercial enzymes as they have broad applications in detergent, food, pharmaceutical, and dairy industries. To provide chimeric Bacillus thermocatenulatus lipase (BTL2), the completely conserved pentapeptide ((1)(1)(2)Ala-His-Ser-Gln-Gly(1)(1)(6)) was replaced with similar sequences ((2)(0)(7)Gly-Glu-Ser-Ala-Gly(2)(1)(1)) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. For this purpose, three mutations including A112G, H113E, and Q115A were inserted in the conserved pentapeptide sequence of btl2 gene. Based on the crystal structures of 2W22, the best structure of opened form of the chimeric lipases were garnered using the MODELLER v9.10 software. The native and chimeric lipases were docked to a set of ligands, and a trial version of Molegro Virtual Docker (MVD) software was used to obtain the energy values. Docking results confirmed chimeric lipase to be better than the native lipase. Following the in silico study, cloning experiments were conducted and expression of native and chimeric btl2 gene in Pichia pastoris was performed. The native and chimeric lipases were purified, and the effect of these mutations on characteristics of chimeric lipase studied and then compared with those of native lipase. Chimeric lipase exhibited 1.6-fold higher activity than the native lipase at 55 degrees C. The highest percentage of both lipases activity was observed at 60 degrees C and pH of 8.0. The ion Ca(2)(+) slightly inhibited the activity of both lipases, whereas the organic solvent enhanced the lipase stability of chimeric lipase as compared with the native lipase. According to the results, the presence of two glycine residues at the conserved pentapeptide region of this chimeric lipase ((1)(1)(2)Gly-Glu-Ser-Ala-Gly(1)(1)(6)) may increase the flexibility of the nucleophilic elbow region and affect the enzyme activity level.
        
Title: The conserved lid tryptophan, W211, potentiates thermostability and thermoactivity in bacterial thermoalkalophilic lipases Timucin E, Sezerman OU Ref: PLoS ONE, 8:e85186, 2013 : PubMed
We hypothesize that aggregation of thermoalkalophilic lipases could be a thermostability mechanism. The conserved tryptophans (W211, W234) in the lid are of particular interest owing to their previous involvements in aggregation and thermostability mechanisms in many other proteins. The thermoalkalophilic lipase from Bacillus thermocatenulatus (BTL2) and its mutants (W211A, W234A) were expressed and purified to homogeneity. We found that, when aggregated, BTL2 is more thermostable than its non-aggregating form, showing that aggregation potentiates thermostability in the thermoalkalophilic lipase. Among the two lid mutants, the W211A lowered aggregation tendency drastically and resulted in a much less thermostable variant of BTL2, which indicated that W211 stabilizes the intermolecular interactions in BTL2 aggregates. Further thermoactivity and CD spectroscopy analyses showed that W211A also led to a strong decrease in the optimal and the melting temperature of BTL2, implying stabilization by W211 also to the intramolecular interactions. The other lid mutant W234A had no effects on these properties. Finally, we analyzed the molecular basis of these experimental findings in-silico using the dimer (PDB ID: 1KU0) and the monomer (PDB ID: 2W22) lipase structures. The computational analyses confirmed that W211 stabilized the intermolecular interactions in the dimer lipase and it is critical to the stability of the monomer lipase. Explicitly W211 confers stability to the dimer and the monomer lipase through distinct aromatic interactions with Y273-Y282 and H87-P232 respectively. The insights revealed by this work shed light not only on the mechanism of thermostability and its relation to aggregation but also on the particular role of the conserved lid tryptophan in the thermoalkalophilic lipases.
Lipase from Geobacillus thermocatenulatus (BTL2) was immobilized in two different matrixes. In one derivative, the enzyme was immobilized on agarose activated with cyanogen bromide (CNBr-BTL2) via its most reactive superficial amino group, whereas the other derivative was covalently immobilized on glyoxyl agarose supports (Gx-BTL2). The latter immobilization protocol leads to intense multipoint covalent attachment between the lysine richest region of enzyme and the glyoxyl groups on the support surface. The resulted solid derivatives were unfolded by incubation under high concentrations of guanidine and then resuspended in aqueous media under different experimental conditions. In both CNBr-BTL2 and Gx-BTL2 derivatives, the oxidation of Cys residues during the unfolding/refolding processes led to inefficient folding for the enzyme because only 25-30% of its initial activity was recovered after 3h in refolding conditions. Dithiothreitol (DTT), a very mild reducing agent, prevented Cys oxidation during the unfolding/refolding process, greatly improving activity recovery in the refolded forms. In parallel, other variables such as pH, buffer composition and the presence of polymers and other additives, had different effects on refolding efficiencies and refolding rates for both derivatives. In the case of solid derivatives of BTL2 immobilized on CNBr-agarose, the surface's chemistry was crucial to guarantee an optimal protein refolding. In this way, uncharged protein vicinities resulted in better refolding efficiencies than those charged ones.
The bacterial thermoalkalophilic lipases that hydrolyze saturated fatty acids at 60-75 degrees C and pH 8-10 are grouped as the lipase family I.5. We report here the crystal structure of the lipase from Geobacillus thermocatenulatus, the first structure of a member of the lipase family I.5 showing an open configuration. Unexpectedly, enzyme activation involves large structural rearrangements of around 70 amino acids and the concerted movement of two lids, the alpha6- and alpha7-helices, unmasking the active site. Central in the restructuring process of the lids are both the transfer of bulky hydrophobic residues out of the N-terminal end of the alpha6-helix and the incorporation of short side chain residues to the alpha6 C-terminal end. All these structural changes are stabilized by the Zn(2+)-binding domain, which is characteristic of this family of lipases. Two detergent molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2, and sn-3 fatty acids chains. The combination of structural and biochemical studies indicate that the lid opening is not mediated by temperature but triggered by interaction with lipid substrate.
Bacillus thermocatenulatus lipase 2 (BTL2) is a thermoalkalophilic lipase that has been reported as an enantioselective biocatalyst for diverse reactions and that heads a group of enzymes that share high resistance towards many inactivation agents (heat, organic solvents, pH etc.). This makes BTL2 an important research target because of its potential industrial applications. BTL2 was cloned and overexpressed in Escherichia coli, purified and concentrated for crystallization using the sitting-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of 13% MPD and 0.2 M ammonium acetate in 0.05 M sodium citrate pH 5.5-5.6. The crystals, which belonged to the orthorhombic space group I222 with unit-cell parameters a = 73.07, b = 129.08, c = 127.49 A, allowed the collection of an X-ray data set to 2.2 A resolution.
In this paper, the stabilization of a lipase from Bacillus thermocatenulatus (BTL2) by a new strategy is described. First, the lipase is selectively adsorbed on hydrophobic supports. Second, the carboxylic residues of the enzyme are modified with ethylenediamine, generating a new enzyme having 4-fold more amino groups than the native enzyme. The chemical amination did not present a significant effect on the enzyme activity and only reduced the enzyme half-life by a 3-4-fold factor in inactivations promoted by heat or organic solvents. Next, the aminated and purified enzyme is desorbed from the support using 0.2% Triton X-100. Then, the aminated enzyme was immobilized on glyoxyl-agarose by multipoint covalent attachment. The immobilized enzyme retained 65% of the starting activity. Because of the lower p K of the new amino groups in the enzyme surface, the immobilization could be performed at pH 9 (while the native enzyme was only immobilized at pH over 10). In fact, the immobilization rate was higher at this pH value for the aminated enzyme than that of the native enzyme at pH 10. The optimal stabilization protocol was the immobilization of aminated BTL2 at pH 9 and the further incubation for 24 h at 25 degrees C and pH 10. This preparation was 5-fold more stable than the optimal BTL2 immobilized on glyoxyl agarose and around 1200-fold more stable than the enzyme immobilized on CNBr and further aminated. The catalytic properties of BTL2 could be greatly modulated by the immobilization protocol. For example, from (R/S)-2- O-butyryl-2-phenylacetic acid, one preparation of BTL2 could be used to produce the S-isomer, while other preparation produced the R-isomer.
        
Title: Expression, purification, and aggregation studies of His-tagged thermoalkalophilic lipase from Bacillus thermocatenulatus Schlieben NH, Niefind K, Schomburg D Ref: Protein Expr Purif, 34:103, 2004 : PubMed
The His-tagged lipase BTL2 from Bacillus thermocatenulatus was expressed in Escherichia coli and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography. The success of protein separation and purification was pH-dependent and increased with decreasing pH. The purified BTL2 lipase showed a strong tendency to aggregate upon concentration, which prevented a reproducible crystallization. Aggregation studies using dynamic light-scattering (DLS) analysis were performed to improve the purification and concentration of BTL2 lipase. Different chemical classes of additives were tested to manipulate the aggregation behaviour of BTL2 lipase with the aim of obtaining a monodisperse sample to use for crystallization. For the process of concentration of BTL2 lipase in monomeric form, the alcohol 2-propanol and the ionic detergent dodecyl dimethylamine-N-oxide (LDAO) were found to be necessary. For the concentrated lipase, the availability of 5% 2-propanol was sufficient to hold the lipase in monomeric form and no additional detergent was needed.
        
Title: Conversion of Bacillus thermocatenulatus lipase into an efficient phospholipase with increased activity towards long-chain fatty acyl substrates by directed evolution and rational design Kauffmann I, Schmidt-Dannert C Ref: Protein Engineering, 14:919, 2001 : PubMed
The thermoalkalophilic lipase from Bacillus thermocatenulatus BTL2 exhibits a low phospholipase activity (lecithin/tributyrin ratio 0.03). A single round of random mutagenesis of the BTL2 gene followed by screening of 6000 transformants on egg-yolk plates identified three variants with 10-12-fold increased phospholipase activities, corresponding to lecithin/tributyrin ratios of 0.16-0.36. All variants were specific for the sn-1 acyl ester bond of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Mutations occurred predominantly in the N-terminal part of BTL2 with regions surrounding the predicted helix alpha(4) and lid as hotspots. Two mutations, L184P located in the predicted helix alpha(4) and H15P found in the highly conserved oxy-anion hole motif among hydrolases, were identified to account for increased phospholipase activity. Two of the three variants showed reduced activities towards medium- and long-chain fatty acyl methyl esters compared to the wild-type enzyme. Substitution of Leu353 with Ser, which is located adjacent to the active site histidine and is important for phospholipase activity in the Staphylococcus hyicus lipase, increased the absolute phospholipase activities of the variants, but not of BTL2, approximately 2-fold. The engineered best variant displayed a lecithin/tributyrin ratio of 0.52, corresponding to a 17-fold increase compared to the wild-type enzyme. Moreover, this variant exhibited a 1.5-4-fold higher activity towards long-chain fatty acyl methyl ester (C18:1, C18:2, C18 and C20) compared to BTL2. A second round of mutagenesis and screening on lecithin-plates yielded no new variants with further increased phospholipase/lipase activity ratios, but instead one variant with a 5-fold increased expression rate and two variants with a 3-fold reduced activity towards triolein were obtained.
        
Title: Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. molecular cloning, nucleotide sequence, purification and some properties Schmidt-Dannert C, Rua ML, Atomi H, Schmid RD Ref: Biochimica & Biophysica Acta, 1301:105, 1996 : PubMed
An expression library was generated by partial Sau3A digestion of genomic DNA from the thermophile Bacillus thermocatenulatus and cloning of DNA fragments in pUC18 in Escherichia coli DH5alpha. Screening for lipase activity identified a 4.5 kb insert in pUC18 which directed the production of lipase in E. coli DH5alpha. A subclone with a 2.2 kb insert was sequenced. The lipase gene codes for a mature lipase of 388 amino acid residues, corresponding to a molecular weight of 43 kDa. As in other Bacillus lipases, an Ala replaces the first Gly in the conserved pentapeptide Gly-X-Ser-X-Gly found in most lipases. The region upstream of the lipase gene contains a Bacillus promoter which directs the expression of lipase in E. coli DH5alpha. The expressed lipase was isolated and purified 312-fold to homogeneity. N-terminal sequencing of the purified lipase revealed a correct cleavage of the preprotein in E. coli DH5alpha. Maximum activity was found at pH 8.0-9.0 with tributyrin and olive oil as substrates and at 60-70 degrees C with p-NPP and olive oil as substrates. The lipase showed high stability at pH 9.0-11.0 and towards various detergents and organic solvents.