One of the smallest lipase. It lacks a lid covering the substrate cleft.the active Ser in AXSXG pentapeptide.Prefers substrates with C8 fatty acid chains It shows remarkable stability at low pH. Also called LIPA or ESTA as it is more an esterase than a lipase. Bacillus subtilis (subsp. spizizenii (ATCC 23059 / NRRL B-14472 / W23; ATCC 6633); BSn5; subsp. natto BEST195; 168)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus subtilis group: NE > Bacillus subtilis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus subtilis subsp. spizizenii ATCC 6633: N, E.
Bacillus subtilis subsp. spizizenii: N, E.
Bacillus subtilis subsp. natto BEST195: N, E.
Bacillus subtilis subsp. spizizenii str. W23: N, E.
Bacillus subtilis BSn5: N, E.
Bacillus subtilis QH-1: N, E.
Bacillus subtilis QB928: N, E.
Bacillus subtilis subsp. subtilis str. BAB-1: N, E.
Bacillus subtilis BEST7613: N, E.
Bacillus subtilis subsp. subtilis str. SC-8: N, E.
Bacillus subtilis MB73/2: N, E.
Bacillus subtilis BEST7003: N, E.
Bacillus subtilis XF-1: N, E.
Bacillus subtilis subsp. spizizenii TU-B-10: N, E.
Bacillus subtilis subsp. subtilis str. 168: N, E.
Bacillus subtilis subsp. subtilis str. RO-NN-1: N, E.
Bacillus subtilis PY79: N, E.
Bacillus subtilis subsp. subtilis str. BSP1: N, E.
Bacillus subtilis subsp. subtilis 6051-HGW: N, E.
Bacillus subtilis subsp. subtilis str. JH642 substr. AG174: N, E.
Bacillus subtilis subsp. subtilis str. AG1839: N, E.
Bacillus subtilis subsp. subtilis str. OH 131.1: N, E.
Bacillus subtilis E1: N, E.
Bacillus subtilis TO-A: N, E.
Bacillus subtilis Miyagi-4: N, E.
Bacillus subtilis subsp. subtilis: N, E.
Bacillus subtilis subsp. niger: N, E.
Bacillus subtilis subsp. inaquosorum KCTC 13429: N, E.
Bacillus subtilis subsp. globigii: N, E.
Molecular evidence
Database
No mutation 21 structures(e.g. : 1I6W, 1ISP, 1R4Z... more)(less) 1I6W: The crystal structure of bacillus subtilis lipase: a minimal alpha/beta hydrolase enzyme, 1ISP: Crystal structure of Bacillus subtilis lipase at 1.3A resolution, 1R4Z: Bacillus subtilis lipase A with covalently bound Rc-IPG-phosphonate-inhibitor, 1R50: Bacillus subtilis lipase A with covalently bound Sc-IPG-phosphonate-inhibitor, 1T2N: Structure of a thermostable triple mutant of Bacillus subtilis lipase obtained through directed evolution N166Y/A132D/L114P, 1T4M: Structure of a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution N166Y/A132D, 2QXT: Crystal Structure Analysis of the Bacillus subtilis lipase crystallized at pH 4.5, 2QXU: Crystal Structure Analysis of the Bacillus subtilis lipase crystallized at pH 5.0, 3D2A: Structure of 1-17A4, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution, 3D2B: Structure of 2D9, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution, 3D2C: Structure of 4D3, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution, 3QMM: Structure of 6B, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution, 3QZU: Crystal structure of Bacillus subtilis Lipase A 7-fold mutant; the outcome of directed evolution towards thermostability, 5CRI: Wild-type lipase A from Bacillus subtilis resolved with 0 % v/v [BMIM][Cl], 5CT4: Wild-type lipase A from Bacillus subtilis resolved with 0 % v/v [BMIM][Cl], 5CT5: Wild-type lipase A from Bacillus subtilis resolved with 0 % v/v [BMIM][Cl], 5CT6: Wild-type lipase 20 % IL soaking, 5CT8: Mutant lipase with no IL, 5CT9: G158E/K44E/R57E/Y49E Bacillus subtilis lipase A with 5% [BMIM][Cl], 5CTA: G158E/K44E/R57E/Y49E Bacillus subtilis lipase A with 10% [BMIM][Cl], 5CUR: G158E/K44E/R57E/Y49E Bacillus subtilis lipase A with 20% [BMIM][Cl] No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKFVKRRIIALVTILMLSVTSLFALQPSAKAAEHNPVVMVHGIGGASFNF AGIKSYLVSQGWSRDKLYAVDFWDKTGTNYNNGPVLSRFVQKVLDETGAK KVDIVAHSMGGANTLYYIKNLDGGNKVANVVTLGGANRLTTGKALPGTDP NQKILYTSIYSSADMIVMNYLSRLDGARNVQIHGVGHIGLLYSSQVNSLI KEGLNGGGQNTN
References
26 moreTitle: Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents Cui H, Vedder M, Schwaneberg U, Davari MD Ref: Methods Mol Biol, 2397:179, 2022 : PubMed
Biocatalysis in organic solvents (OSs) is very appealing for the industry in producing bulk and/or fine chemicals, such as pharmaceuticals, biodiesel, and fragrances. The poor performance of enzymes in OSs (e.g., reduced activity, insufficient stability, and deactivation) negates OSs' excellent solvent properties. Molecular dynamics (MD) simulations provide a complementary method to study the relationship between enzymes dynamics and the stability in OSs. Here we describe computational procedure for MD simulation of enzymes in OSs with an example of Bacillus subtilis lipase A (BSLA) in dimethyl sulfoxide (DMSO) cosolvent with software GROMACS. We discuss main essential practical issues considered (such as choice of force field, parameterization, simulation setup, and trajectory analysis). The core part of this protocol (enzyme-OS system setup, analysis of structural-based and solvation-based observables) is transferable to other enzymes and any OS systems. Combining with experimental studies, the obtained molecular knowledge is most likely to guide researchers to access rational protein engineering approaches to tailor OS resistant enzymes and expand the scope of biocatalysis in OS media. Finally, we discuss potential solutions to overcome the remaining challenges of computational biocatalysis in OSs and briefly draw future directions for further improvement in this field.
Biocatalysis in organic solvents (OSs) enables more efficient routes to the synthesis of various valuable chemicals. However, OSs often reduce enzymatic activity which limits the use enzymes in OSs. Herein, we report a comprehensive understanding of interactions between surface polar substitutions and DMSO by integrating the molecular dynamics (MD) simulations of 45 variants from Bacillus subtilis lipase A (BSLA) and substitution landscape in “BSLA-SSM library. By systematically analyzing 39 structural-, solvation-, and interaction energy-based observables, we discovered hydration shell maintenance, DMSO reduction, and decreased local flexibility simultaneously govern the stability of polar variants in OS. Moreover, the fingerprints of 1644 polar-related variants in three OSs demonstrated substituting aromatic to polar residue(s) hold great potential to highly improve OSs resistance. Hence, surface polar engineering enable to be a powerful and general strategy for generating OS-tolerant lipases and other enzymes, thereby adapting the catalyst to the desired reaction and process with OSs.
Lipases are ubiquitously used in chemo-enzymatic synthesis and industrial applications. Nevertheless, the modulation of the activity of lipases by organic solvents still is not fully understood at the molecular level. We systematically investigated the activity and structure of lipase A from Bacillus subtilis in binary water-organic solvent mixtures of dimethyl sulfoxide (DMSO), acetonitrile (ACN), and isopropyl alcohol (IPA) using activity assays, fluorescence spectroscopy, molecular dynamics (MD) simulations, and FRET/MD analysis. The enzymatic activity strongly depended on the type and amount of organic solvent in the reaction media. Whereas IPA and ACN reduced the activity of the enzyme, small concentrations of DMSO led to lipase activation via an uncompetitive mechanism. DMSO molecules did not directly interfere with the binding of the substrate in the active site, contrary to what is known for other solvents and enzymes. We propose that the His156-Asp133 interaction, the binding of organic molecules to the active site, and the water accessibility of the substrate are key factors modulating the catalytic activity. Furthermore, we rationalized the role of solvent descriptors on the regulation of enzymatic activity in mixtures with low concentrations of the organic molecule, with prospective implications for the optimization of biocatalytic processes via solvent tuning.
        
26 lessTitle: Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents Cui H, Vedder M, Schwaneberg U, Davari MD Ref: Methods Mol Biol, 2397:179, 2022 : PubMed
Biocatalysis in organic solvents (OSs) is very appealing for the industry in producing bulk and/or fine chemicals, such as pharmaceuticals, biodiesel, and fragrances. The poor performance of enzymes in OSs (e.g., reduced activity, insufficient stability, and deactivation) negates OSs' excellent solvent properties. Molecular dynamics (MD) simulations provide a complementary method to study the relationship between enzymes dynamics and the stability in OSs. Here we describe computational procedure for MD simulation of enzymes in OSs with an example of Bacillus subtilis lipase A (BSLA) in dimethyl sulfoxide (DMSO) cosolvent with software GROMACS. We discuss main essential practical issues considered (such as choice of force field, parameterization, simulation setup, and trajectory analysis). The core part of this protocol (enzyme-OS system setup, analysis of structural-based and solvation-based observables) is transferable to other enzymes and any OS systems. Combining with experimental studies, the obtained molecular knowledge is most likely to guide researchers to access rational protein engineering approaches to tailor OS resistant enzymes and expand the scope of biocatalysis in OS media. Finally, we discuss potential solutions to overcome the remaining challenges of computational biocatalysis in OSs and briefly draw future directions for further improvement in this field.
Biocatalysis in organic solvents (OSs) enables more efficient routes to the synthesis of various valuable chemicals. However, OSs often reduce enzymatic activity which limits the use enzymes in OSs. Herein, we report a comprehensive understanding of interactions between surface polar substitutions and DMSO by integrating the molecular dynamics (MD) simulations of 45 variants from Bacillus subtilis lipase A (BSLA) and substitution landscape in “BSLA-SSM library. By systematically analyzing 39 structural-, solvation-, and interaction energy-based observables, we discovered hydration shell maintenance, DMSO reduction, and decreased local flexibility simultaneously govern the stability of polar variants in OS. Moreover, the fingerprints of 1644 polar-related variants in three OSs demonstrated substituting aromatic to polar residue(s) hold great potential to highly improve OSs resistance. Hence, surface polar engineering enable to be a powerful and general strategy for generating OS-tolerant lipases and other enzymes, thereby adapting the catalyst to the desired reaction and process with OSs.
Lipases are ubiquitously used in chemo-enzymatic synthesis and industrial applications. Nevertheless, the modulation of the activity of lipases by organic solvents still is not fully understood at the molecular level. We systematically investigated the activity and structure of lipase A from Bacillus subtilis in binary water-organic solvent mixtures of dimethyl sulfoxide (DMSO), acetonitrile (ACN), and isopropyl alcohol (IPA) using activity assays, fluorescence spectroscopy, molecular dynamics (MD) simulations, and FRET/MD analysis. The enzymatic activity strongly depended on the type and amount of organic solvent in the reaction media. Whereas IPA and ACN reduced the activity of the enzyme, small concentrations of DMSO led to lipase activation via an uncompetitive mechanism. DMSO molecules did not directly interfere with the binding of the substrate in the active site, contrary to what is known for other solvents and enzymes. We propose that the His156-Asp133 interaction, the binding of organic molecules to the active site, and the water accessibility of the substrate are key factors modulating the catalytic activity. Furthermore, we rationalized the role of solvent descriptors on the regulation of enzymatic activity in mixtures with low concentrations of the organic molecule, with prospective implications for the optimization of biocatalytic processes via solvent tuning.
        
Title: Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET Magalhaes RP, Cunha JM, Sousa SF Ref: Int J Mol Sci, 22:11257, 2021 : PubMed
Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.
        
Title: Deletion and Randomization of Structurally Variable Regions in B. subtilis Lipase A (BSLA) Alter Its Stability and Hydrolytic Performance Against Long Chain Fatty Acid Esters Martinez R, Bernal C, Alvarez R, Concha C, Araya F, Cabrera R, Dhoke GV, Davari MD Ref: Int J Mol Sci, 21:, 2020 : PubMed
The continuous search for novel enzyme backbones and the engineering of already well studied enzymes for biotechnological applications has become an increasing challenge, especially by the increasing potential diversity space provided by directed enzyme evolution approaches and the demands of experimental data generated by rational design of enzymes. In this work, we propose a semi-rational mutational strategy focused on introducing diversity in structurally variable regions in enzymes. The identified sequences are subjected to a progressive deletion of two amino acids and the joining residues are subjected to saturation mutagenesis using NNK degenerate codons. This strategy offers a novel library diversity approach while simultaneously decreasing enzyme size in the variable regions. In this way, we intend to identify and reduce variable regions found in enzymes, probably resulting from neutral drift evolution, and simultaneously studying the functional effect of said regions. This strategy was applied to Bacillus. subtilis lipase A (BSLA), by selecting and deleting six variable enzyme regions (named regions 1 to 6) by the deletion of two amino acids and additionally randomizing the joining amino acid residues. After screening, no active variants were found in libraries 1% and 4%, 15% active variants were found in libraries 2% and 3%, and 25% for libraries 5 and 6 (n = 3000 per library, activity detected using tributyrin agar plates). Active variants were assessed for activity in microtiter plate assay (pNP-butyrate), thermal stability, substrate preference (pNP-butyrate, -palmitate), and compared to wildtype BSLA. From these analyses, variant P5F3 (F41L-DeltaW42-DeltaD43-K44P), from library 3 was identified, showing increased activity towards longer chain p-nitrophenyl fatty acid esters, when compared to BSLA. This study allowed to propose the targeted region 3 (positions 40-46) as a potential modulator for substrate specificity (fatty acid chain length) in BSLA, which can be further studied to increase its substrate spectrum and selectivity. Additionally, this variant showed a decreased thermal resistance but interestingly, higher isopropanol and Triton X-100 resistance. This deletion-randomization strategy could help to expand and explore sequence diversity, even in already well studied and characterized enzyme backbones such as BSLA. In addition, this strategy can contribute to investigate and identify important non-conserved regions in classic and novel enzymes, as well as generating novel biocatalysts with increased performance in specific processes, such as enzyme immobilization.
While loop motifs frequently play a major role in protein function, our understanding of how to rationally engineer proteins with novel loop domains remains limited. In the absence of rational approaches, the incorporation of loop domains often destabilizes proteins, thereby requiring massive screening and selection to identify sites that can accommodate loop insertion. We developed a computational strategy for rapidly scanning the entire structure of a scaffold protein to determine the impact of loop insertion at all possible amino acid positions. This approach is based on the Rosetta kinematic loop modeling protocol and was demonstrated by identifying sites in lipase that were permissive to insertion of the LAP peptide. Interestingly, the identification of permissive sites was dependent on the contribution of the residues in the near-loop environment on the Rosetta score and did not correlate with conventional structural features (e.g., B-factors). As evidence of this, several insertion sites (e.g., following residues 17, 47-49, and 108), which were predicted and confirmed to be permissive, interrupted helices, while others (e.g., following residues 43, 67, 116, 119, and 121), which are situated in loop regions, were nonpermissive. This approach was further shown to be predictive for beta-glucosidase and human phosphatase and tensin homologue (PTEN), and to facilitate the engineering of insertion sites through in silico mutagenesis. By enabling the design of loop-containing protein libraries with high probabilities of soluble expression, this approach has broad implications in many areas of protein engineering, including antibody design, improving enzyme activity, and protein modification.
        
Title: Thermostability of Lipase A and Dynamic Communication Based on Residue Interaction Network Xia Q, Ding Y Ref: Protein Pept Lett, 26:702, 2019 : PubMed
OBJECTIVE: Dynamic communication caused by mutation affects protein stability. The main objective of this study is to explore how mutations affect communication and to provide further insight into the relationship between heat resistance and signal propagation of Bacillus subtilis lipase (Lip A). METHODS: The relationship between dynamic communication and Lip A thermostability is studied by long-time MD simulation and residue interaction network. The Dijkstra algorithm is used to get the shortest path of each residue pair. Subsequently, time-series frequent paths and spatio-temporal frequent paths are mined through an Apriori-like algorithm. RESULTS: Time-series frequent paths show that the communication between residue pairs, both in wild-type lipase (WTL) and mutant 6B, becomes chaotic with an increase in temperature; however, more residues in 6B can maintain stable communication at high temperature, which may be associated with the structural rigidity. Furthermore, spatio-temporal frequent paths reflect the interactions among secondary structures. For WTL at 300K, beta7, alphaC, alphaB, the longest loop, alphaA and alphaF contact frequently. The 310-helix between beta3 and alphaA is penetrated by spatio-temporal frequent paths. At 400K, only alphaC can be frequently transmitted. For 6B, when at 300K, alphaA and alphaF are in more tight contact by spatio-temporal frequent paths though I157M and N166Y. Moreover, the rigidity of the active site His156 and the C-terminal of Lip A are increased, as reflected by the spatio-temporal frequent paths. At 400K, alphaA and alphaF, 310-helix between beta3 and alphaA, the longest loop, and the loop where the active site Asp133 is located can still maintain stable communication. CONCLUSION: From the perspective of residue dynamic communication, it is obviously found that mutations cause changes in interactions between secondary structures and enhance the rigidity of the structure, contributing to the thermal stability and functional activity of 6B.
A broad substrate specificity enzyme that can act on a wide range of substrates would be an asset in industrial application. T1 lipase known to have broad substrate specificity in its native form apparently exhibits the same active sites as polyhydroxylalkanoate (PHA) depolymerase. PhaZ6Pl is one of the PHA depolymerases that can degrade semicrystalline P(3HB). The objective of this study is to enable T1 lipase to degrade semicrystalline P(3HB) similar to PhaZ6Pl while maintaining its native function. A structural study on PhaZ6Pl contains no lid in its structure and therefore T1 lipase was designed with removal of its lid region. BSLA lipase was chosen as the reference protein for T1 lipase modification since it contains no lid. Initially, structures of both enzymes were compared via protein-protein superimposition in 3D-space and the location of the lid region of T1 lipase was highlighted. A total of three variants of T1 lipase without lid were successfully designed by referring to BSLA lipase (a lipase without lid). The ability of T1 lipase without lid variants in degrading P(3HB) was investigated quantitatively. All the variants showed activity towards the substrate which confirmed that T1 lipase without lid is indeed able to degrade P(3HB). In addition, D2 was recorded to have the highest activity amongst other variants. Results obtained in this study highlighted the fact that native T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation but also P(3HB) by simply removing the lid region.
        
Title: Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions Kubler D, Ingenbosch KN, Bergmann A, Weidmann M, Hoffmann-Jacobsen K Ref: Eur Biophysical Journal, 44:655, 2015 : PubMed
Because of their vast diversity of substrate specificity and reaction conditions, lipases are versatile materials for biocatalysis. Lipase A from Bacillus subtilis (BSLA) is the smallest lipase yet discovered. It has the typical alpha/beta hydrolase fold but lacks a lid covering the substrate cleft. In this study, the pH-dependence of the activity, stability, structure, and dynamics of BSLA was investigated by fluorescence spectroscopy. By use of a fluorogenic substrate it was revealed that the optimum pH for BSLA activity is 8.5 whereas thermodynamic and kinetic stability are maximum at pH 10. The origin of this behavior was clarified by investigation of ANS (8-anilino-1-naphthalenesulfonic acid) binding and fluorescence quenching of the two single tryptophan mutants W31F and W42F. Variations in segmental dynamics were investigated by use of time-resolved fluorescence anisotropy. This analysis showed that the activity maximum is governed by high surface hydrophobicity and high segmental mobility of surface loops whereas the stability optimum is a result of low segmental mobility and surface hydrophobicity.
We present the first crystallographic insight into the interactions of an ionic liquid (IL) with an enzyme, which has widespread implications for stabilizing enzymes in IL media for biocatalysis. Structures of Bacillus subtilis lipase A (lipA) and an IL-stable variant (QM-lipA) were obtained in the presence of increasing concentrations of 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). These studies revealed that the [BMIM] cation interacts with surface residues through hydrophobic and cation-pi interactions. Of specific interest was the disruption of internal stacking interactions of aromatic side chains by [BMIM], which provides structural evidence for the mechanism of enzyme denaturation by ILs. The interaction of [BMIM] and Cl ions with lipA was reduced by the stabilizing mutations Y49E and G158E in QM-lipA. Ultimately, these findings present the molecular basis for stabilizing enzymes from IL-induced inactivation, as well as the selection of ILs that are less denaturing.
        
Title: Structural Rigidity and Protein Thermostability in Variants of Lipase A from Bacillus subtilis Rathi PC, Jaeger KE, Gohlke H Ref: PLoS ONE, 10:e0130289, 2015 : PubMed
Understanding the origin of thermostability is of fundamental importance in protein biochemistry. Opposing views on increased or decreased structural rigidity of the folded state have been put forward in this context. They have been related to differences in the temporal resolution of experiments and computations that probe atomic mobility. Here, we find a significant (p = 0.004) and fair (R2 = 0.46) correlation between the structural rigidity of a well-characterized set of 16 mutants of lipase A from Bacillus subtilis (BsLipA) and their thermodynamic thermostability. We apply the rigidity theory-based Constraint Network Analysis (CNA) approach, analyzing directly and in a time-independent manner the statics of the BsLipA mutants. We carefully validate the CNA results on macroscopic and microscopic experimental observables and probe for their sensitivity with respect to input structures. Furthermore, we introduce a robust, local stability measure for predicting thermodynamic thermostability. Our results complement work that showed for pairs of homologous proteins that raising the structural stability is the most common way to obtain a higher thermostability. Furthermore, they demonstrate that related series of mutants with only a small number of mutations can be successfully analyzed by CNA, which suggests that CNA can be applied prospectively in rational protein design aimed at higher thermodynamic thermostability.
Previously, Lipase A from Bacillus subtilis was subjected to in vitro directed evolution using iterative saturation mutagenesis, with randomization sites chosen on the basis of the highest B-factors available from the crystal structure of the wild-type (WT) enzyme. This provided mutants that, unlike WT enzyme, retained a large part of their activity after heating above 65 degC and cooling down. Here, we subjected the three best mutants along with the WT enzyme to biophysical and biochemical characterization. Combining thermal inactivation profiles, circular dichroism, X-ray structure analyses and NMR experiments revealed that mutations of surface amino acid residues counteract the tendency of Lipase A to undergo precipitation under thermal stress. Reduced precipitation of the unfolding intermediates rather than increased conformational stability of the evolved mutants seems to be responsible for the activity retention.
        
Title: Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R, Ruan L, Peng D, Sun M Ref: Journal of Bacteriology, 193:2070, 2011 : PubMed
Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism.
Rational and in vitro evolutionary approaches to improve either protein stability or aggregation resistance were successful, but empirical rules for simultaneous improvement of both stability and aggregation resistance under denaturing conditions are still to be ascertained. We have created a robust variant of a lipase from Bacillus subtilis named "6B" using multiple rounds of in vitro evolution. T(m) and optimum activity temperature of 6B is 78 degrees C and 65 degrees C, respectively, which is ~22 degrees C and 30 degrees C higher than that of wild-type lipase. Most significantly, 6B does not aggregate upon heating. Physical basis of remarkable thermostability and non-aggregating behavior of 6B was explored using X-ray crystallography, NMR and differential scanning calorimetry. Our structural investigations highlight the importance of tightening of mobile regions of the molecule such as loops and helix termini to attain higher thermostability. Accordingly, NMR studies suggest a very rigid structure of 6B lipase. Further investigation suggested that reduction/perturbation of the large hydrophobic patches present in the wild-type protein structure, decreased propensity of amino acid sequence for aggregation and absence of aggregation-prone intermediate during thermal unfolding of 6B can account for its resistance to aggregation. Overall, our study suggest that better anchoring of the loops with the rest of the protein molecule through mutations particularly on the sites that perturb/disturb the exposed hydrophobic patches can simultaneously increase protein stability and aggregation resistance.
        
Title: Integrating In Silico and In vitro approaches to dissect the stereoselectivity of Bacillus subtilis lipase A toward ketoprofen vinyl ester Ni Z, Zhou P, Jin X, Lin XF Ref: Chemical Biology Drug Des, 78:301, 2011 : PubMed
The asymmetric catalysis, as the character of enzyme, attracts increasing attention from the scientific and industrial communities. In this study, the Bacillus subtilis lipase A, as a model enzyme, is studied systematically to dissect its stereoselectivity toward (rac)-ketoprofen vinyl ester using a combination scheme of molecular docking and quantum mechanical/molecular mechanical (QM/MM) analysis. In this procedure, the rational orientation of the two enantiomers of ketoprofen vinyl ester is obtained with the AutoDock performing, and then, the steric contacts between the enzyme and substrate in the docking outputs are examined visually at the atomic level with a small-probe technique. Subsequently, the binding energies of the enzyme-substrate complexes are calculated using an ONIOM (Our own N-layered Integrated Molecular Orbital + Molecular mechanics)-based QM/MM protocol. The results obtained from the theoretical studies show that the B. subtilis lipase A prefer to hydrolyze the (R )-ketoprofen vinyl ester when compared to its (S )-enantiomer, with a relatively high E (stereoselectivity) value of 31.28 charactering its enantioselectivity. Furthermore, to verify the conclusions from the computational analysis, the B. subtilis lipase A gene is cloned to overexpress the recombinant B. subtilis lipase A, and its stereoselectivity was determined. Satisfactorily, the experimental results are in well agreement with the theoretical predictions because the (R )-ketoprofen vinyl ester is found as the preferring enantiomer of the B. subtilis lipase A, with experimentally measured E value of 36.7. We therefore expect that this in silico-in vitro hybrid approach can provide a new and effective avenue to predict the catalytic activity of and to investigate the molecular mechanism of enzyme-mediated asymmetric catalysis and help in understanding the enzymatic process and in rational enzyme design.
BACKGROUND: Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. RESULTS: We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. CONCLUSIONS: The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks. Multiple genome-level comparisons among five closely related Bacillus species were also carried out. The determined genome sequence of B. subtilis natto and gene annotations are available from the Natto genome browser http:\/\/natto-genome.org/.
        
Title: Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM Ref: Journal of Molecular Biology, 381:324, 2008 : PubMed
In vitro evolution methods are now being routinely used to identify protein variants with novel and enhanced properties that are difficult to achieve using rational design. However, one of the limitations is in screening for beneficial mutants through several generations due to the occurrence of neutral/negative mutations occurring in the background of positive ones. While evolving a lipase in vitro from mesophilic Bacillus subtilis to generate thermostable variants, we have designed protocols that combine stringent three-tier testing, sequencing and stability assessments on the protein at the end of each generation. This strategy resulted in a total of six stabilizing mutations in just two generations with three mutations per generation. Each of the six mutants when evaluated individually contributed additively to thermostability. A combination of all of them resulted in the best variant that shows a remarkable 15 degrees C shift in melting temperature and a millionfold decrease in the thermal inactivation rate with only a marginal increase of 3 kcal mol(-1) in free energy of stabilization. Notably, in addition to the dramatic shift in optimum temperature by 20 degrees C, the activity has increased two- to fivefold in the temperature range 25-65 degrees C. High-resolution crystal structures of three of the mutants, each with 5 degrees increments in melting temperature, reveal the structural basis of these mutations in attaining higher thermostability. The structures highlight the importance of water-mediated ionic networks on the protein surface in imparting thermostability. Saturation mutagenesis at each of the six positions did not result in enhanced thermostability in almost all the cases, confirming the crucial role played by each mutation as revealed through the structural study. Overall, our study presents an efficient strategy that can be employed in directed evolution approaches employed for obtaining improved properties of proteins.
Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%.
Understanding the structural basis of altered properties of proteins due to changes in temperature or pH provides useful insights in designing proteins with improved stability. Here we report the basis for the pH-dependent thermostability of the Bacillus subtilis lipase (Lip A) using spectroscopic and X-ray crystallographic studies. At pH values above 7, lipase denatures and aggregates when heated at temperatures above 45 degrees C. However, at pH below 6 lipase denatures upon heating but the activity and its native structure is completely recovered upon cooling. In order to obtain the structural basis of this unusual stability of lipase, we determined high-resolution crystal structures of the lipase in two different crystal forms at pH 4.5 and 5. These structures show linear oligomerization of lipase using only two types of dimeric associations and these inter-molecular interactions are completely absent in several crystal forms of wild-type and mutant proteins obtained at basic pH. In accordance with the crystallographic studies, spectroscopic investigations reveal an invariant secondary structure in the pH range of 4-10. Quaternary organization of lipase at low pH resulted in changes in the tryptophan environment and binding of 1-anilino-8-naphthalene sulfate (ANS) at low pH. Low pH stability of the lipase is not observed in the presence of sodium chloride (>0.2 M) indicating the importance of ionic interactions at low pH. Inter- and intra-molecular ionic interactions that occur at pH below 6.0 are proposed to trap the molecule in a conformation that allows its complete refolding upon cooling.
Phage display can be used as a protein-engineering tool for the selection of proteins with desirable binding properties from a library of mutants. Here we describe the application of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has important properties for the preparation of the pharmaceutically relevant chiral compound 1,2-O-isopropylidene-sn-glycerol (IPG). PCR mutagenesis with spiked oligonucleotides was employed for saturation mutagenesis of a stretch of amino acids near the active site. After expression of these mutants on bacteriophages, dual selection with (S)-(+)- and (R)-(-)-IPG stereoisomers covalently coupled to enantiomeric phosphonate suicide inhibitors (SIRAN Sc and Rc inhibitors, respectively) was used for the isolation of variants with inverted enantioselectivity. The mutants were further characterised by determination of their Michaelis-Menten parameters. The 3D structures of the Sc and Rc inhibitor-lipase complexes were determined and provided structural insight into the mechanism of enantioselectivity of the enzyme. In conclusion, we have used phage display as a fast and reproducible method for the selection of Bacillus lipase A mutant enzymes with inverted enantioselectivity.
        
Title: Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM Ref: Journal of Molecular Biology, 341:1271, 2004 : PubMed
Variation in gene sequences generated by directed evolution approaches often does not assure a minimalist design for obtaining a desired property in proteins. While screening for enhanced thermostability, structural information was utilized in selecting mutations that are generated by error-prone PCR. By this approach we have increased the half-life of denaturation by 300-fold compared to the wild-type Bacillus subtilis lipase through three point mutations generated by only two cycles of error-prone PCR. At lower temperatures the activity parameters of the thermostable mutants are unaltered. High-resolution crystal structures of the mutants show subtle changes, which include stacking of tyrosine residues, peptide plane flipping and a better anchoring of the terminus, that challenge rational design and explain the structural basis for enhanced thermostability. The approach may offer an efficient and minimalist solution for the enhancement of a desired property of a protein.
        
Title: Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase Rajakumara E, Acharya P, Ahmad S, Shanmugam VM, Rao NM, Sankaranarayanan R Ref: Acta Crystallographica D Biol Crystallogr, 60:160, 2004 : PubMed
Bacillus subtilis lipase loses activity above pH 10.5 and below pH 6.0. However, at low pH, i.e. below pH 5.0, the lipase acquires remarkable thermostability. Activity was unaltered for 2 h at 323 K at pH 4.0-5.0, although at pH values above 7.0 the activity was lost rapidly within minutes. Circular-dichroism studies indicate significant changes in the tertiary structure of the lipase, whereas the secondary-structural content remained unaltered. To elucidate the structural basis of the enhanced thermostability, three different forms have been crystallized at low pH along with three crystal forms of two thermostable mutants obtained using a directed-evolution approach.
        
Title: Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 A resolution Kawasaki K, Kondo H, Suzuki M, Ohgiya S, Tsuda S Ref: Acta Crystallographica D Biol Crystallogr, 58:1168, 2002 : PubMed
Bacillus subtilis extracellular lipase (BsL) has an exceptionally low molecular weight (19.4 kDa) for a member of the lipase family. A crystallographic study was performed on BsL in order to design and produce mutant BsL that will be more suitable for industrial uses based on analysis of the three-dimensional structure. Recently, the crystal structure of BsL has been determined at 1.5 A resolution [van Pouderoyen et al. (2001). J. Mol. Biol. 309, 215-226]. In the present study, a new crystal form of BsL which provides diffraction data to higher resolution was obtained and its structure was determined at 1.3 A using the MAD method. It was found that the active-site residue Ser77 has alternate side-chain conformations. The O(gamma) atom of the first conformer forms a hydrogen bond to the N(epsilon) atom of His155, a member of the catalytic triad. In contrast, the second conformer is constructed with a hydrogen bond to the side-chain atom of the adjacent His76. These two conformers presumably correspond to the active and inactive states, respectively. Similar alternate conformations in the catalytic serine residue have been observed in Fusarium solani cutinase determined at 1.0 A resolution and Penicillium purpurogenum acetylxylan esterase at 0.9 A resolution. In addition, a glycerol molecule, which was used as a cryoprotectant, is found to be located in the active site. On the basis of these results, a model for substrate binding in the reaction-intermediate state of BsL is proposed.
        
Title: Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure Eggert T, van Pouderoyen G, Dijkstra BW, Jaeger KE Ref: FEBS Letters, 502:89, 2001 : PubMed
Bacillus subtilis secretes the lipolytic enzymes LipA and LipB. We show here that they are differentially expressed depending on the composition of the growth medium: LipA is produced in rich and in minimal medium, whereas LipB is present only in rich medium. A comparison of biochemical characteristics revealed that LipB is thermostable at pH 11 but becomes thermolabile at pH 5. However, construction of a variant carrying the substitution A76G in the conserved lipase pentapeptide reversed these effects. The atomic coordinates from the LipA crystal structure were used to build a three-dimensional structural model of LipB, which revealed that 43 out of 45 residues different from LipA are surface-located allowing to rationalize the differences observed in the substrate preferences of the two enzymes.
        
Title: The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme van Pouderoyen G, Eggert T, Jaeger KE, Dijkstra BW Ref: Journal of Molecular Biology, 309:215, 2001 : PubMed
The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 A resolution. It is the first structure of a member of homology family 1.4 of bacterial lipases. The lipase shows a compact minimal alpha/beta hydrolase fold with a six-stranded parallel beta-sheet flanked by five alpha-helices, two on one side of the sheet and three on the other side. The catalytic triad residues, Ser77, Asp133 and His156, and the residues forming the oxyanion hole (backbone amide groups of Ile12 and Met78) are in positions very similar to those of other lipases of known structure. However, no lid domain is present and the active-site nucleophile Ser77 is solvent-exposed. A model of substrate binding is proposed on the basis of a comparison with other lipases with a covalently bound tetrahedral intermediate mimic. It explains the preference of the enzyme for substrates with C8 fatty acid chains.
        
Title: A 32 kb nucleotide sequence from the region of the lincomycin-resistance gene (22 degrees-25 degrees) of the Bacillus subtilis chromosome and identification of the site of the lin-2 mutation Kumano M, Tamakoshi A, Yamane K Ref: Microbiology, 143 ( Pt 8):2775, 1997 : PubMed
A 32 kb nucleotide sequence in the region of the lincomycin-resistance gene, located from 22 degrees to 25 degrees on the Bacillus subtilis chromosome, was determined. Among 32 putative ORFs identified, four [lipA for lipase, natA, natB and yzaE (renamed yccK)] have already been reported, although the functions of NatA, NatB and YccK remain to be characterized. Six putative products were found to exhibit significant similarity to known proteins in the databases, namely L-asparaginase precursor, protein aspartate phosphatase, alpha-glucosidase, two tellurite-resistance proteins and a hypothetical protein from B. subtilis. The region of the tellurite-resistance gene, consisting of seven ORFs, seems to correspond to an operon. The products of 14 ORFs exhibited considerable or limited similarity to known proteins. The sequenced region seems to be rich in membrane proteins, since at least 16 gene products appeared to contain membrane-spanning domains. The site of the lin-2 mutation (two nucleotide replacements) was mapped and identified by sequencing. This site is located between a putative promoter and the SD sequence of ImrA (yccB) [a putative repressor of the lmr operon, which consists of lmrA and lmrB (yccA)]. LmrB is a homologue of proteins involved in drug-export systems and seems likely to be the protein responsible for resistance to lincomycin.
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
        
Title: Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme Lesuisse E, Schanck K, Colson C Ref: European Journal of Biochemistry, 216:155, 1993 : PubMed
The extracellular lipase of Bacillus subtilis 168 was purified from the growth medium of an overproducing strain by ammonium sulfate precipitation followed by phenyl-Sepharose and hydroxyapatite column chromatography. The purified lipase had a strong tendency to aggregate. It exhibited a molecular mass of 19,000 Da by SDS-PAGE and a pI of 9.9 by chromatofocusing. The enzyme showed maximum stability at pH 12 and maximum activity at pH 10. The lipase was active toward p-nitrophenyl esters and triacylglycerides with a marked preference for esters with C8 acyl groups. Using trioleyl glycerol as substrate, the enzyme preferentially cleaved the 1(3)-position ester bond. No interfacial activation effect was observed with triacetyl glycerol as substrate.
        
Title: Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168 Dartois V, Baulard A, Schanck K, Colson C Ref: Biochimica & Biophysica Acta, 1131:253, 1992 : PubMed
The gene coding for an extracellular lipase of Bacillus subtilis 168 was cloned and found to be expressed in Escherichia coli. Enzyme activity measurements showed no fatty acid chain length preference. A set of Tn5 insertions which inactivate the gene were localized and used to initiate its sequencing. The nucleotide sequence was determined on two independent clones expressed in E. coli. In one of these clones, the sequence revealed a frameshift, due to the presence of an additional adenine in the N-terminal region, which caused the interruption of the open reading frame, probably allowing translation to initiate at a second ATG codon. The sequence of the wild-type lip gene from B. subtilis was confirmed on the chromosomal fragment amplified by polymerase chain reaction (PCR). When compared to other lipases sequenced to date, the enzyme described here lacks the conserved pentapeptide Gly-X-Ser-X-Gly supposed to be essential for catalysis. However, alignments of several microbial lipase sequences suggest that the pentapeptide Ala-X-Ser-X-Gly present in the lipase B. subtilis may function as the catalytic site. Homologies were found in the N-terminal protein region with lipases from different Pseudomonas species. The predicted M(r) and isoelectric point for the mature protein are 19,348 and 9.7 respectively.