Bacillus subtilis cephalosporin c deacetylase (EC 3.1.1.41)
Comment
Other strains: Bacillus subtilis (subsp. spizizenii (strain ATCC 23059 / NRRL B-1447 / W23); ATCC 6633; natto BEST195); BSn5 6 aa different in P94388 and Q59233. The structure is identical to P94388 but residues 122 and 315 are Arg and Ile
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus subtilis group: NE > Bacillus subtilis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus subtilis subsp. spizizenii ATCC 6633: N, E.
Bacillus subtilis subsp. spizizenii: N, E.
Bacillus subtilis subsp. natto BEST195: N, E.
Bacillus subtilis subsp. spizizenii str. W23: N, E.
Bacillus subtilis BSn5: N, E.
Bacillus subtilis QH-1: N, E.
Bacillus subtilis QB928: N, E.
Bacillus subtilis subsp. subtilis str. BAB-1: N, E.
Bacillus subtilis BEST7613: N, E.
Bacillus subtilis subsp. subtilis str. SC-8: N, E.
Bacillus subtilis MB73/2: N, E.
Bacillus subtilis BEST7003: N, E.
Bacillus subtilis XF-1: N, E.
Bacillus subtilis subsp. spizizenii TU-B-10: N, E.
Bacillus subtilis subsp. subtilis str. 168: N, E.
Bacillus subtilis subsp. subtilis str. RO-NN-1: N, E.
Bacillus subtilis PY79: N, E.
Bacillus subtilis subsp. subtilis str. BSP1: N, E.
Bacillus subtilis subsp. subtilis 6051-HGW: N, E.
Bacillus subtilis subsp. subtilis str. JH642 substr. AG174: N, E.
Bacillus subtilis subsp. subtilis str. AG1839: N, E.
Bacillus subtilis subsp. subtilis str. OH 131.1: N, E.
Bacillus subtilis E1: N, E.
Bacillus subtilis TO-A: N, E.
Bacillus subtilis Miyagi-4: N, E.
Bacillus subtilis subsp. subtilis: N, E.
Bacillus subtilis subsp. niger: N, E.
Bacillus subtilis subsp. inaquosorum KCTC 13429: N, E.
Bacillus subtilis subsp. globigii: N, E.
Molecular evidence
Database
No mutation 3 structures: 1L7A, 1ODS, 1ODT No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MQLFDLPLDQLQTYKPEKTAPKDFSEFWKLSLEELAKVQAEPDLQPVDYP ADGVKVYRLTYKSFGNARITGWYAVPDKEGPHPAIVKYHGYNASYDGEIH EMVNWALHGYATFGMLVRGQQSSEDTSISPHGHALGWMTKGILDKDTYYY RGVYLDAVRALEVISSFDEVDETRIGVTGGSQGGGLTIAAAALSDIPKAA VADYPYLSNFERAIDVALEQPYLEINSFFRRNGSPETEVQAMKTLSYFDI MNLADRVKVPVLMSIGLIDKVTPPSTVFAAYNHLETKKELKVYRYFGHEY IPAFQTEKLAFFKQHLKG
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
        
Title: The 25 degrees-36 degrees region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes Yamane K, Kumano M, Kurita K Ref: Microbiology, 142 ( Pt 11):3047, 1996 : PubMed
We determined a 146 kb contiguous sequence at the 25 degrees-36 degrees region of the Bacillus subtilis chromosome containing the amyE-srfA segment. Among the 113 ORFs identified, 33 are already known. functions were assigned to 38 ORFs by a search of non-redundant protein sequence data banks and those of 16 ORFs were suggested through significant similarity with reported sequences. The amino acid sequences of 13 of the ORfs were similar to proteins of unknown function of Escherichia coli, Haemophilus influenzae and other species. We did not find similarities for 29 ORFs to any known proteins. The 146 kb region is rich in enzymes (35 ORFs) related to the metabolism of low molecular mass compounds and five genes for surfactin production occupy about 26 kb of the region.
        
Title: Gene cloning, nucleotide sequence, and expression of a cephalosporin-C deacetylase from Bacillus subtilis Mitsushima K, Takimoto A, Sonoyama T, Yagi S Ref: Applied Environmental Microbiology, 61:2224, 1995 : PubMed
The gene encoding a cephalosporin-C deacetylase (CAH) from Bacillus subtilis SHS 0133 was cloned and sequenced. The nucleotide sequence contained an open reading frame encoding a polypeptide consisting of 318 amino acids, the molecular weight of which was in good agreement with the value obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The deduced amino acid sequence contained the common sequence Gly-X-Ser-X-Gly found in many esterases, lipases, and serine proteases. This indicates that CAH is a serine enzyme. A possible promoter sequence which is very similar to the consensus sequences of -35 and -10 regions recognized by B. subtilis RNA polymerase utilizing sigma factor H was found in the 5'-flanking region of the CAH structural gene. Two repeated A+T-rich blocks consisting of 24 bp were also found in the upstream region of the initiation codon. We constructed a series of expression plasmids by inserting the CAH gene into Escherichia coli ATG vectors. The degree of CAH gene expression depended on promoters and vector plasmids, which have different replication origins. The expressed CAH protein was an active form in the soluble fraction obtained after cell disruption. The highest expression level was accomplished with an expression plasmid, pCAH400, which has the trp promoter and the replication origin derived from pAT153. In the fermentation using a 30-liter jar fermentor, the transformant E. coli JM103(pCAH400) produced 440 U of CAH per ml of culture during a 24-h incubation. This value corresponded to 2.1 g of CAH protein in 1 liter of culture broth.
        
5 lessTitle: Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R, Ruan L, Peng D, Sun M Ref: Journal of Bacteriology, 193:2070, 2011 : PubMed
Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism.
BACKGROUND: Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. RESULTS: We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. CONCLUSIONS: The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks. Multiple genome-level comparisons among five closely related Bacillus species were also carried out. The determined genome sequence of B. subtilis natto and gene annotations are available from the Natto genome browser http:\/\/natto-genome.org/.
        
Title: Batch production of deacetyl 7-aminocephalosporanic acid by immobilized cephalosporin-C deacetylase Takimoto A, Takakura T, Tani H, Yagi S, Mitsushima K Ref: Applied Microbiology & Biotechnology, 65:263, 2004 : PubMed
Bacillus subtilis SHS0133 cephalosporin-C deacetylase (CAH) overexpressed in Escherichia coli was immobilized on an anion-exchange resin, KA-890, using glutaraldehyde. The activity yield of immobilized enzyme was approximately 55% of the free enzyme. The pH range for stability of the immobilized enzyme (pH 5-10) was broader than that for free enzyme. The K(m)(app) value of immobilized enzyme for 7-aminocephalosporanic acid (7-ACA) was similar to that of the free enzyme. This immobilized enzyme obeyed Michaelis-Menten kinetics similar to those of the free enzyme. A batch-type reactor with a water jacket was employed for deacetylation of 7-ACA using CAH immobilized on KA-890. Ten kilograms of 7-ACA were completely converted to deacetyl 7-ACA at pH 8.0 within 90 min. The reaction kinetics agreed well with a computer simulation model. Moreover, the immobilized enzyme exhibited only a slight loss of the initial activity even after repeated use (52 times ) over a period of 70 days. This reaction will thus be useful for the production of cephalosporin-type antibiotics.
Esterases and deacetylases active on carbohydrate ligands have been classified into 14 families based upon amino acid sequence similarities. Enzymes from carbohydrate esterase family seven (CE-7) are unusual in that they display activity towards both acetylated xylooligosaccharides and the antibiotic, cephalosporin C. The 1.9A structure of the multifunctional CE-7 esterase (hereinafter CAH) from Bacillus subtilis 168 reveals a classical alpha/beta hydrolase fold encased within a 32 hexamer. This is the first example of a hexameric alpha/beta hydrolase and is further evidence of the versatility of this particular fold, which is used in a wide variety of biological contexts. A narrow entrance tunnel leads to the centre of the molecule, where the six active-centre catalytic triads point towards the tunnel interior and thus are sequestered away from cytoplasmic contents. By analogy to self-compartmentalising proteases, the tunnel entrance may function to hinder access of large substrates to the poly-specific active centre. This would explain the observation that the enzyme is active on a variety of small, acetylated molecules. The structure of an active site mutant in complex with the reaction product, acetate, reveals details of the putative oxyanion binding site, and suggests that substrates bind predominantly through non-specific contacts with protein hydrophobic residues. Protein residues involved in catalysis are tethered by interactions with protein excursions from the canonical alpha/beta hydrolase fold. These excursions also mediate quaternary structure maintenance, so it would appear that catalytic competence is only achieved on protein multimerisation. We suggest that the acetyl xylan esterase (EC 3.1.1.72) and cephalosporin C deacetylase (EC 3.1.1.41) enzymes of the CE-7 family represent a single class of proteins with a multifunctional deacetylase activity against a range of small substrates.
        
Title: High-level expression, purification, and some properties of a recombinant cephalosporin-C deacetylase Takimoto A, Yagi S, Mitsushima K Ref: J Biosci Bioeng, 87:456, 1999 : PubMed
To maximize the expression of the cephalosporin-C deacetylase (CAH) gene isolated from Bacillus subtilis SHS 0133 in Escherichia coli, a series of expression plasmids was constructed with various spacings between the Shine-Dalgarno sequence and the ATG initiation codon. As the most efficient expression plasmid, we selected pCAH431, which has the trp promoter, a replication origin derived from pAT153, and a spacing of 13 nucleotides. E. coli JM103 with pCAH431 produced 4.9 g of CAH per liter on cultivation at 37 degrees C for 20 h in a 30-l jar fermentor. Since the amount of CAH reached about 70% of the total protein in the soluble fraction of the cells, and CAH was recovered from the cell extracts in an active form, the CAH was purified easily to homogeneity by only one column chromatography step. Twenty grams of 7-aminocephalosporanic acid was completely converted to deacetyl-7-aminocephalosporanic acid, a starting material for cefcapene pivoxil hydrochloride, by 12 mg of the purified enzyme without significant appearance of by-products. Thus, our expression and purification system has made the industrial production of CAH possible.
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
        
Title: The 25 degrees-36 degrees region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes Yamane K, Kumano M, Kurita K Ref: Microbiology, 142 ( Pt 11):3047, 1996 : PubMed
We determined a 146 kb contiguous sequence at the 25 degrees-36 degrees region of the Bacillus subtilis chromosome containing the amyE-srfA segment. Among the 113 ORFs identified, 33 are already known. functions were assigned to 38 ORFs by a search of non-redundant protein sequence data banks and those of 16 ORFs were suggested through significant similarity with reported sequences. The amino acid sequences of 13 of the ORfs were similar to proteins of unknown function of Escherichia coli, Haemophilus influenzae and other species. We did not find similarities for 29 ORFs to any known proteins. The 146 kb region is rich in enzymes (35 ORFs) related to the metabolism of low molecular mass compounds and five genes for surfactin production occupy about 26 kb of the region.
        
Title: Gene cloning, nucleotide sequence, and expression of a cephalosporin-C deacetylase from Bacillus subtilis Mitsushima K, Takimoto A, Sonoyama T, Yagi S Ref: Applied Environmental Microbiology, 61:2224, 1995 : PubMed
The gene encoding a cephalosporin-C deacetylase (CAH) from Bacillus subtilis SHS 0133 was cloned and sequenced. The nucleotide sequence contained an open reading frame encoding a polypeptide consisting of 318 amino acids, the molecular weight of which was in good agreement with the value obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The deduced amino acid sequence contained the common sequence Gly-X-Ser-X-Gly found in many esterases, lipases, and serine proteases. This indicates that CAH is a serine enzyme. A possible promoter sequence which is very similar to the consensus sequences of -35 and -10 regions recognized by B. subtilis RNA polymerase utilizing sigma factor H was found in the 5'-flanking region of the CAH structural gene. Two repeated A+T-rich blocks consisting of 24 bp were also found in the upstream region of the initiation codon. We constructed a series of expression plasmids by inserting the CAH gene into Escherichia coli ATG vectors. The degree of CAH gene expression depended on promoters and vector plasmids, which have different replication origins. The expressed CAH protein was an active form in the soluble fraction obtained after cell disruption. The highest expression level was accomplished with an expression plasmid, pCAH400, which has the trp promoter and the replication origin derived from pAT153. In the fermentation using a 30-liter jar fermentor, the transformant E. coli JM103(pCAH400) produced 440 U of CAH per ml of culture during a 24-h incubation. This value corresponded to 2.1 g of CAH protein in 1 liter of culture broth.