(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Protostomia: NE > Ecdysozoa: NE > Panarthropoda: NE > Arthropoda: NE > Mandibulata: NE > Pancrustacea: NE > Hexapoda: NE > Insecta: NE > Dicondylia: NE > Pterygota: NE > Neoptera: NE > Holometabola: NE > Diptera: NE > Brachycera: NE > Muscomorpha: NE > Eremoneura: NE > Cyclorrhapha: NE > Schizophora: NE > Acalyptratae: NE > Tephritoidea: NE > Tephritidae: NE > Dacinae: NE > Dacini: NE > Bactrocera [genus]: NE > Bactrocera [subgenus]: NE > Bactrocera dorsalis complex: NE > Bactrocera dorsalis: NE
Carb_B_Arthropoda : bacdo-i1ydc5Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis) Carboxylesterase, bacdo-i1ydc6Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis) Carboxylesterase, bacdo-t1wuv4Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis) Carboxylesterase B1 CarE12, bacdo-t1wvb9Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis) Carboxylesterase B2 CarE5, bacdo-a0a034v980Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase B1, bacdo-a0a034vla7Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis); Bactrocera latifrons (Malaysian fruit fly). Esterase B1, bacdo-a0a034vr46Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase FE4, bacdo-a0a034wsb1Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase B1, bacdo-a0a034vfz2Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase FE4, bacdo-a0a034v043Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase B1, bacdo-a0a034w7n7Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis); Dacus dorsalis; Chaetodacus latifrons. Esterase B1, bacdo-a0a034vq00Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Venom carboxylesterase-6, bacdo-a0a034vqg8Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis); Bactrocera latifrons (Malaysian fruit fly). Esterase B1, bacdo-a0a034vvj6Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Glutactin, bacdo-a0a034wa37Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase B1, bacdo-a0a034w7m1Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase B1, bacdo-a0a034whl8Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis); Dacus dorsalis. Venom carboxylesterase-6, bacdo-a0a034w7l1Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase-5B, bacdo-a0a034w075Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase B1, bacdo-a0a034wjc7Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase B1. Glutactin : bacdo-a0a034wjs7Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Glutactin, bacdo-a0a034vqe3Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Glutactin, bacdo-a0a034w869Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Glutactin. Juvenile_hormone_esterase : bacdo-a0a034vkj0Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Venom carboxylesterase-6, bacdo-a0a034wf19Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase E4, bacdo-a0a034v5m2Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Esterase E4. Neuroligin : bacdo-a0a034w1a5Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Neuroligin-3, bacdo-a0a034w4h6Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Neuroligin-1. Neurotactin : bacdo-a0a034vjg4Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Neurotactin. OtherNon-catalytic_C : bacdo-a0a034vy70Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Carboxylesterase 1E, bacdo-a0a034vlr8Bactrocera dorsalis (Oriental fruit fly) (Dacus dorsalis). Venom carboxylesterase-6. Yolk-Protein_dipter : bacdo-1viteBactrocera dorsalis (Oriental fruit fly) vitellogenin 1, bacdo-2viteBactrocera dorsalis (Oriental fruit fly) vitellogenin 2
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bactrocera cucurbitae: N, E.
Zeugodacus cucurbitae: N, E.
Bactrocera latifrons: N, E.
Bactrocera oleae: N, E.
G488S : Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides I214V/G488S/Q643R : Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides I214V : Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides Q643R : Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAHTTSLLSGASSAAASPLSSRQYSVASSPRLSGDIGRGLFAIVVLLLRM SSVYGVIDRLVVQTSSGPVRGRSVTVQGREVHVYTGIPYAKPPLDDLRFR KPVPAEPWHGVLDATRLPATCVQERYEYFPGFSGEEIWNPNTNVSEDCLY INVWAPAKARLRHGRGANGGEHSNKADTDHLIHNGNPQNTTNGLPVLIWI YGGGFMTGTATLDIYNADIMSAVGNVIVASFQYRVGAFGFLHLSPAMPGY EEEAPGNVGLWDQALAIRWLKTNAHAFGGNPEWMTLFGESAGSSSVNAQL VSPVTAGLVKRGMMQSGTMNAPWSHMTSEKAVEIGKALINDCNCNASLLS ENPQAVMACMRAVDAKTISVQQWNSYSGILSFPSAPTIDGAFLPDHPMKM METADLRGYDILMGNVRDEGTYFLLYDFIDYFDKDEATSLPRDKYLEIMN NIFGKVTQAEREAIIFRHTSWVGNPGLENQQQIGRAVGDHFFTCPTNEYA QALAERGASVHYYYFTHRTSTSLWGEWMGVLHGDEIEYFFGQPLNTSLQY RQVERELGKRMLNAVIEFAKTGNPATDGEEWPNFTKKDPVYYVFSTDDKE EKLQRGPLEGRCAFWNEYLREVRKWGSQCELKPSSASSLQQKQQHLLLQQ RSIVTFMLTLSLVLGIPSVNAFF
References
Title: Biochemical and molecular characterisation of acetylcholinesterase in four field populations of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) Shen GM, Wang XN, Dou W, Wang JJ Ref: Pest Manag Sci, 68:1553, 2012 : PubMed
BACKGROUND: The oriental fruit fly, Bactrocera dorsalis, is a major pest that infects fruits and agricultural products worldwide. The latest resistance monitoring of B. dorsalis from mainland China has identified high levels of resistance to insecticides. In this study, the biochemical and molecular characteristics of acetylcholinesterase (AChE) in four field populations of B. dorsalis are investigated. RESULTS: Among the four populations, the DG population and its purified AChE were found to be the least susceptible to malathion and five inhibitors, whereas the KM population and its purified AChE were the most susceptible. The highest catalytic activity of purified AChE was found for the KM population, and the catalytic activity of the DG population was the lowest. Among developmental stages, the AChE purified from larvae was found to be the most insusceptible to inhibitors, but its catalytic activity was the highest. Sequence analysis of the cDNA encoding AChE showed that some residue differences existed. However, no significant differences in expression levels of the AChE gene among populations and developmental stages were detected. CONCLUSION: The results suggest that the decrease in susceptibility of B. dorsalis was mainly caused by decrease in AChE activity, and they provide a broad view on the relation between AChE and resistance.
        
Title: Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides Hsu JC, Haymer DS, Wu WJ, Feng HT Ref: Insect Biochemistry & Molecular Biology, 36:396, 2006 : PubMed
Mutations in the gene encoding the enzyme acetylcholinesterase (AChE) of the oriental fruit fly, Bactrocera dorsalis, associated with resistance to an organophosphorus insecticide have been characterized. Three point mutations producing nonsynonymous changes in the predicted amino acid sequence of the product of the B. dorsalis ace gene in resistant vs. susceptible flies have been identified. One of these changes is unique to B. dorsalis while the other two occur at sites that are identical to mutations previously described for another Bactrocera species. Although the precise role of the third mutation is not clearly established, the independent origin of two identical alterations in these two species strongly supports the idea proposed previously that molecular changes associated with insecticide resistance in key genes and enzymes such as AChE are largely constrained to a limited number of sites. The results obtained here also suggest that the widespread use of organophosphorus insecticides will likely lead to a predictable acquisition of resistance in wild populations of B. dorsalis as well as other pest species. For surveys of B. dorsalis populations that may develop resistance, diagnostic tests using PCR-RFLP based methods for detecting the presence of all three mutations in individual flies are described.