The Arabidopsis EDS1 (arath-eds1) and PAD4 (arath-PAD4) genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance.EDS1 can dimerize and interact with PAD4 and SAG101 (arath-At5g14930) Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 'helper' NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). Two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling.
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > rosids: NE > malvids: NE > Brassicales: NE > Brassicaceae: NE > Camelineae: NE > Arabidopsis: NE > Arabidopsis thaliana: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MDDCRFETSELQASVMISTPLFTDSWSSCNTANCNGSIKIHDIAGITYVA IPAVSMIQLGNLVGLPVTGDVLFPGLSSDEPLPMVDAAILKLFLQLKIKE GLELELLGKKLVVITGHSTGGALAAFTALWLLSQSSPPSFRVFCITFGSP LLGNQSLSTSISRSRLAHNFCHVVSIHDLVPRSSNEQFWPFGTYLFCSDK GGVCLDNAGSVRLMFNILNTTATQNTEEHQRYGHYVFTLSHMFLKSRSFL GGSIPDNSYQAGVALAVEALGFSNDDTSGVLVKECIETATRIVRAPILRS AELANELASVLPARLEIQWYKDRCDASEEQLGYYDFFKRYSLKRDFKVNM SRIRLAKFWDTVIKMVETNELPFDFHLGKKWIYASQFYQLLAEPLDIANF YKNRDIKTGGHYLEGNRPKRYEVIDKWQKGVKVPEECVRSRYASTTQDTC FWAKLEQAKEWLDEARKESSDPQRRSLLREKIVPFESYANTLVTKKEVSL DVKAKNSSYSVWEANLKEFKCKMGYENEIEMVVDESDAMET
Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins EDS1, PAD4 and SAG101 and two sub-families of HET-S/LOB-B (HeLo)-domain "helper" NLRs, ADR1s and NRG1s. EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4 mediated pathogen resistance, but are dispensible for PAD4 mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4(R314A) and SAG101(M304R) EPD variants maintain interaction with EDS1 but lose association, respectively, with helper NLRs ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity.
Plant nucleotide-binding leucine-rich repeat-containing (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to enable TIR-encoded NADase activity for immune signaling. TIR-NLR signaling requires helper NLRs N requirement gene 1 (NRG1) and Activated Disease Resistance 1 (ADR1), and Enhanced Disease Susceptibility 1 (EDS1) that forms a heterodimer with each of its paralogs Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene101 (SAG101). Here, we show that TIR-containing proteins catalyze production of 2'-(5''-phosphoribosyl)-5'-adenosine mono-/di-phosphate (pRib-AMP/ADP) in vitro and in planta. Biochemical and structural data demonstrate that EDS1-PAD4 is a receptor complex for pRib-AMP/ADP, which allosterically promote EDS1-PAD4 interaction with ADR1-L1 but not NRG1A. Our study identifies TIR-catalyzed pRib-AMP/ADP as a missing link in TIR signaling via EDS1-PAD4 and as likely second messengers for plant immunity.
        
Title: PopP2 interacts with PAD4 in an acetyltransferase activity-dependent manner and affects plant immunity Huh SU Ref: Plant Signal Behav, :2017631, 2022 : PubMed
Plant pathogenic bacteria inject many of the effector proteins into host cell to manipulate host protein and promote pathogen development. Only a few effectors can be recognized by plant immune receptors called nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs). Enhanced disease susceptibility1 (EDS1) is an important regulator of plant basal and NLR receptor-triggered immunity. EDS1/PAD4 or EDS1/SAG101 heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilize resistance pathways. Type III effector PopP2 contributes to Ralstonia solanacearum virulence. PopP2 has an acetyltransferase activity and is recognized by Arabidopsis NLR pair RPS4/RRS1-R. On the other hand, PopP2 avirulence function is dependent on its enzymatic activity but target proteins in the host cell are still largely unknown. In this study, we found EDS1 and PAD4 are new host targets of PopP2 effector. Arabidopsis PAD4 lipase-like domain protein physically associates with enzymatic active PopP2 protein but not inactive PopP2(C321A). PAD4-PopP2 interaction is disrupted by EDS1 immune regulator but not SAG101. We propose that acetyltransferase activity of PopP2 might confer specificity to PAD4 to manipulate plant immunity. As a counter strategy, EDS1 associates with PAD4 to form heterodimeric immune regulator complexes for activating basal resistance and interfering PopP2 physical interaction.
Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins EDS1, PAD4 and SAG101 and two sub-families of HET-S/LOB-B (HeLo)-domain "helper" NLRs, ADR1s and NRG1s. EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4 mediated pathogen resistance, but are dispensible for PAD4 mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4(R314A) and SAG101(M304R) EPD variants maintain interaction with EDS1 but lose association, respectively, with helper NLRs ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity.
Plant nucleotide-binding leucine-rich repeat-containing (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to enable TIR-encoded NADase activity for immune signaling. TIR-NLR signaling requires helper NLRs N requirement gene 1 (NRG1) and Activated Disease Resistance 1 (ADR1), and Enhanced Disease Susceptibility 1 (EDS1) that forms a heterodimer with each of its paralogs Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene101 (SAG101). Here, we show that TIR-containing proteins catalyze production of 2'-(5''-phosphoribosyl)-5'-adenosine mono-/di-phosphate (pRib-AMP/ADP) in vitro and in planta. Biochemical and structural data demonstrate that EDS1-PAD4 is a receptor complex for pRib-AMP/ADP, which allosterically promote EDS1-PAD4 interaction with ADR1-L1 but not NRG1A. Our study identifies TIR-catalyzed pRib-AMP/ADP as a missing link in TIR signaling via EDS1-PAD4 and as likely second messengers for plant immunity.
        
Title: PopP2 interacts with PAD4 in an acetyltransferase activity-dependent manner and affects plant immunity Huh SU Ref: Plant Signal Behav, :2017631, 2022 : PubMed
Plant pathogenic bacteria inject many of the effector proteins into host cell to manipulate host protein and promote pathogen development. Only a few effectors can be recognized by plant immune receptors called nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs). Enhanced disease susceptibility1 (EDS1) is an important regulator of plant basal and NLR receptor-triggered immunity. EDS1/PAD4 or EDS1/SAG101 heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilize resistance pathways. Type III effector PopP2 contributes to Ralstonia solanacearum virulence. PopP2 has an acetyltransferase activity and is recognized by Arabidopsis NLR pair RPS4/RRS1-R. On the other hand, PopP2 avirulence function is dependent on its enzymatic activity but target proteins in the host cell are still largely unknown. In this study, we found EDS1 and PAD4 are new host targets of PopP2 effector. Arabidopsis PAD4 lipase-like domain protein physically associates with enzymatic active PopP2 protein but not inactive PopP2(C321A). PAD4-PopP2 interaction is disrupted by EDS1 immune regulator but not SAG101. We propose that acetyltransferase activity of PopP2 might confer specificity to PAD4 to manipulate plant immunity. As a counter strategy, EDS1 associates with PAD4 to form heterodimeric immune regulator complexes for activating basal resistance and interfering PopP2 physical interaction.
Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 "helper" NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). The mechanism of RNL/EDS1 family protein cooperation is not understood. Here, we present genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition-dependent interaction of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex interacts with NRG1, and EDS1-PAD4 with ADR1, in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling.
Plant nucleotide binding/leucine-rich repeat (NLR) immune receptors are activated by pathogen effectors to trigger host defenses and cell death. Toll-interleukin 1 receptor domain NLRs (TNLs) converge on the ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) family of lipase-like proteins for all resistance outputs. In Arabidopsis (Arabidopsis thaliana) TNL-mediated immunity, AtEDS1 heterodimers with PHYTOALEXIN DEFICIENT4 (AtPAD4) transcriptionally induced basal defenses. AtEDS1 uses the same surface to interact with PAD4-related SENESCENCE-ASSOCIATED GENE101 (AtSAG101), but the role of AtEDS1-AtSAG101 heterodimers remains unclear. We show that AtEDS1-AtSAG101 functions together with N REQUIRED GENE1 (AtNRG1) coiled-coil domain helper NLRs as a coevolved TNL cell death-signaling module. AtEDS1-AtSAG101-AtNRG1 cell death activity is transferable to the Solanaceous species Nicotiana benthamiana and cannot be substituted by AtEDS1-AtPAD4 with AtNRG1 or AtEDS1-AtSAG101 with endogenous NbNRG1. Analysis of EDS1-family evolutionary rate variation and heterodimer structure-guided phenotyping of AtEDS1 variants and AtPAD4-AtSAG101 chimeras identify closely aligned a-helical coil surfaces in the AtEDS1-AtSAG101 partner C-terminal domains that are necessary for reconstituted TNL cell death signaling. Our data suggest that TNL-triggered cell death and pathogen growth restriction are determined by distinctive features of EDS1-SAG101 and EDS1-PAD4 complexes and that these signaling machineries coevolved with other components within plant species or clades to regulate downstream pathways in TNL immunity.
Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal alpha/beta hydrolase and C-terminal alpha-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of alpha/beta hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity.
In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.
        
Title: Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana EDS1, a key component of plant immunity, in complex with its signalling partner SAG101 Wagner S, Rietz S, Parker JE, Niefind K Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 67:245, 2011 : PubMed
In plants, the nucleocytoplasmic protein EDS1 (Enhanced disease susceptibility1) is an important regulator of innate immunity, coordinating host-cell defence and cell-death programs in response to pathogen attack. Arabidopsis thaliana EDS1 stabilizes and signals together with its partners PAD4 (Phytoalexin deficient4) and SAG101 (Senescence-associated gene101). Characterization of EDS1 molecular configurations in vitro and in vivo points to the formation of structurally and spatially distinct EDS1 homomeric dimers and EDS1 heteromeric complexes with either PAD4 or SAG101 as necessary components of the immune response. EDS1, PAD4 and SAG101 constitute a plant-specific protein family with a unique `EP' (EDS1-PAD4-specific) domain at their C-termini and an N-terminal domain resembling enzymes with an alpha/beta-hydrolase fold. Here, the expression, purification and crystallization of a functional EDS1 complex formed by EDS1 and SAG101 from Arabidopsis thaliana are reported. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 101.8, b = 115.9, c = 122.8 A, and diffracted to 3.5 A resolution.
The interplay between pathogen effectors, their host targets, and cognate recognition proteins provides various opportunities for antagonistic cycles of selection acting on plant and pathogen to achieve or abrogate resistance, respectively. Selection has previously been shown to maintain diversity in plant proteins involved in pathogen recognition and some of their cognate pathogen effectors. We analyzed the signatures of selection on 10 Arabidopsis thaliana genes encoding defense signal transduction proteins in plants, which are potential targets of pathogen effectors. There was insufficient evidence to reject neutral evolution for 6 genes encoding signaling components consistent with these proteins not being targets of effectors and/or indicative of constraints on their ability to coevolve with pathogen effectors. Functional constraints on effector targets may have provided the driving selective force for the evolution of guard proteins. PBS1, a known target of an effector, showed little variation but is known to be monitored by a variable guard protein. Evidence of selection maintaining diversity was present at NPR1, PAD4, and EDS1. Differences in the signatures of selection observed may reflect the numbers of effectors that target a particular protein, the presence or absence of a cognate guard protein, as well as functional constraints imposed by biochemical activities or interactions with plant proteins.
        
Title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 Feys BJ, Moisan LJ, Newman MA, Parker JE Ref: EMBO Journal, 20:5400, 2001 : PubMed
The Arabidopsis EDS1 and PAD4 genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance. Phenotypic analysis of eds1 and pad4 null mutants shows that EDS1 and PAD4 are required for resistance conditioned by the same spectrum of R genes but fulfil distinct roles within the defence pathway. EDS1 is essential for elaboration of the plant hypersensitive response, whereas EDS1 and PAD4 are both required for accumulation of the plant defence-potentiating molecule, salicylic acid. EDS1 is necessary for pathogen-induced PAD4 mRNA accumulation, whereas mutations in PAD4 or depletion of salicylic acid only partially compromise EDS1 expression. Yeast two-hybrid analysis reveals that EDS1 can dimerize and interact with PAD4. However, EDS1 dimerization is mediated by different domains to those involved in EDS1-PAD4 association. Co-immunoprecipitation experiments show that EDS1 and PAD4 proteins interact in healthy and pathogen-challenged plant cells. We propose two functions for EDS1. The first is required early in plant defence, independently of PAD4. The second recruits PAD4 in the amplification of defences, possibly by direct EDS1-PAD4 association.
Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.
The Arabidopsis PAD4 gene previously was found to be required for expression of multiple defense responses including camalexin synthesis and PR-1 gene expression in response to infection by the bacterial pathogen Pseudomonas syringae pv. maculicola. This report describes the isolation of PAD4. The predicted PAD4 protein sequence displays similarity to triacyl glycerol lipases and other esterases. The PAD4 transcript was found to accumulate after P. syringae infection or treatment with salicylic acid (SA). PAD4 transcript levels were very low in infected pad4 mutants. Treatment with SA induced expression of PAD4 mRNA in pad4-1, pad4-3, and pad4-4 plants but not in pad4-2 plants. Induction of PAD4 expression by P. syringae was independent of the regulatory factor NPR1 but induction by SA was NPR1-dependent. Taken together with the previous observation that pad4 mutants have a defect in accumulation of SA upon pathogen infection, these results suggest that PAD4 participates in a positive regulatory loop that increases SA levels, thereby activating SA-dependent defense responses.
        
Title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ Ref: Plant Cell, 8:2033, 1996 : PubMed
The interaction between Arabidopsis and the biotrophic oomycete Peronospora parasitica (downy mildew) provides an attractive model pathosystem to identify molecular components of the host that are required for genotype-specific recognition of the parasite. These components are the so-called RPP genes (for resistance to P. parasitica). Mutational analysis of the ecotype Wassilewskija (Ws-0) revealed an RPP-nonspecific locus called EDS1 (for enhanced disease susceptibility) that is required for the function of RPP genes on chromosomes 3 (RPP1/RPP14 and RPP10) and 4 (RPP12). Genetic analyses demonstrated that the eds1 mutation is recessive and is not a defective allele of any known RPP gene, mapping to the bottom arm of chromosome 3 (approximately 13 centimorgans below RPP1/RPP14). Phenotypically, the Ws-eds1 mutant seedlings supported heavy sporulation by P. parasitica isolates that are each diagnostic for one of the RPP genes in wild-type Ws-0; none of the isolates is capable of sporulating on wild-type Ws-0. Ws-eds1 seedlings exhibited enhanced susceptibility to some P. parasitica isolates when compared with a compatible wild-type ecotype, Columbia, and the eds1 parental ecotype, Ws-0. This was observed as earlier initiation of sporulation and elevated production of conidiosporangia. Surprisingly, cotyledons of Ws-eds1 also supported low sporulation by five isolates of P. parasitica from Brassica oleracea. These isolates were unable to sporulate on > 100 ecotypes of Arabidopsis, including wild-type Ws-0. An isolate of Albugo candida (white blister) from B. oleracea also sporulated on Ws-eds1, but the mutant exhibited no alteration in phenotype when inoculated with several oomycete isolates from other host species. The bacterial resistance gene RPM1, conferring specific recognition of the avirulence gene avrB from Pseudomonas syringae pv glycinea, was not compromised in Ws-eds1 plants. The mutant also retained full responsiveness to the chemical inducer of systemic acquired resistance, 2,6-dichloroisonicotinic acid; Ws-eds1 seedlings treated with 2,6-dichloroisonicotinic acid became resistant to the Ws-0-compatible and Ws-0-incompatible P. parasitica isolates Emwa1 and Noco2, respectively. In summary, the EDS1 gene appears to be a necessary component of the resistance response specified by several RPP genes and is likely to function upstream from the convergence of disease resistance pathways in Arabidopsis.