(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > environmental samples: NE > uncultured bacterium: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MDGVLWRVRTAALMAALLALAAWALVWASPSVEAQSNPYQRGPNPTRSAL TADGPFSVATYTVSRLSVSGFGGGVIYYPTGTSLTFGGIAMSPGYTADAS SLAWLGRRLASHGFVVLVINTNSRFDYPDSRASQLSAALNYLRTSSPSAV RARLDANRLAVAGHSMGGGGTLRIAEQNPSLKAAVPLTPWHTDKTFNTSV PVLIVGAEADTVAPVSQHAIPFYQNLPSTTPKVYVELDNASHFAPNSNNA AISVYTISWMKLWVDNDTRYRQFLCNVNDPALSDFRTNNRHCQ
The pentameric gamma-Aminobutyric acid type A receptors (GABA(A)Rs) are ligand-gated ion channels that mediate the majority of inhibitory neurotransmission in the brain. In the cerebellum, the two main receptor subtypes are the 2alpha1/2beta/gamma and 2alpha6/2beta/delta subunits. In the present study, an interaction proteomics workflow was used to reveal additional subtypes that contain both alpha1 and alpha6 subunits. Immunoprecipitation of the alpha6 subunit from mouse brain cerebellar extract co-purified the alpha1 subunit. In line with this, pre-incubation of the cerebellar extract with anti-alpha6 antibodies and analysis by blue native gel electrophoresis mass-shifted part of the alpha1 complexes, indicative of the existence of an alpha1alpha6-containing receptor. Subsequent mass spectrometry of the blue native gel showed the alpha1alpha6-containing receptor subtype to exist in two main forms, i.e., with or without Neuroligin-2. Immunocytochemistry on a cerebellar granule cell culture revealed co-localization of alpha6 and alpha1 in post-synaptic puncta that apposed the presynaptic marker protein Vesicular GABA transporter, indicative of the presence of this synaptic GABA(A)R subtype.
        
Title: Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation Crnjar A, Grinen A, Kamerlin SCL, Ramirez-Sarmiento CA Ref: ACS Organic & Inorganic Au, :, 2023 : PubMed
Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from Ideonella sakaiensis (IsPETase) having optimal catalytic activity at 30-35 degC. Crystal structures of IsPETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to IsPETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease Topt. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of IsPETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in IsPETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in IsPETase.
INTRODUCTION: Poly (ethylene terephthalate) (PET) is one of the most abundant polyester materials used in daily life and it is also one of the main culprits of environmental pollution. ICCG (F243I/D238C/S283C/Y127G) is enzyme with four modifications of leaf-branch compost cutinase (LCC) that display outstanding performance in hydrolyzing PET and hold a great potential in further applications. METHOD: Here, we used ICCG to degrade PET particles of various sizes and use the density of attack sites (attack) and kinetic parameters to evaluate the effect of particle size on enzyme degradation efficiency. We are surprised to observe that there is a certain relationship between Km and attack. In order to further confirm the relationship, we obtained three different enzymes (Y95K, M166S and H218S) by site-directed mutagenesis on the basis of ICCG. RESULT: The results confirmed that there was a negative correlation between Km and attack. In addition, we also found that increasing the affinity between the enzyme and the substrate does not necessarily lead to the increase of degradation rate. CONCLUSION: These findings show that the granulation of PET and the selection of appropriate particle size are helpful to improve its industrial application value. At the same time, additional protein engineering to increase ICCG performance is realistic, but it can't be limited to enhance the affinity between enzyme and substrate.
The pentameric gamma-Aminobutyric acid type A receptors (GABA(A)Rs) are ligand-gated ion channels that mediate the majority of inhibitory neurotransmission in the brain. In the cerebellum, the two main receptor subtypes are the 2alpha1/2beta/gamma and 2alpha6/2beta/delta subunits. In the present study, an interaction proteomics workflow was used to reveal additional subtypes that contain both alpha1 and alpha6 subunits. Immunoprecipitation of the alpha6 subunit from mouse brain cerebellar extract co-purified the alpha1 subunit. In line with this, pre-incubation of the cerebellar extract with anti-alpha6 antibodies and analysis by blue native gel electrophoresis mass-shifted part of the alpha1 complexes, indicative of the existence of an alpha1alpha6-containing receptor. Subsequent mass spectrometry of the blue native gel showed the alpha1alpha6-containing receptor subtype to exist in two main forms, i.e., with or without Neuroligin-2. Immunocytochemistry on a cerebellar granule cell culture revealed co-localization of alpha6 and alpha1 in post-synaptic puncta that apposed the presynaptic marker protein Vesicular GABA transporter, indicative of the presence of this synaptic GABA(A)R subtype.
        
Title: Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation Crnjar A, Grinen A, Kamerlin SCL, Ramirez-Sarmiento CA Ref: ACS Organic & Inorganic Au, :, 2023 : PubMed
Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from Ideonella sakaiensis (IsPETase) having optimal catalytic activity at 30-35 degC. Crystal structures of IsPETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to IsPETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease Topt. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of IsPETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in IsPETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in IsPETase.
INTRODUCTION: Poly (ethylene terephthalate) (PET) is one of the most abundant polyester materials used in daily life and it is also one of the main culprits of environmental pollution. ICCG (F243I/D238C/S283C/Y127G) is enzyme with four modifications of leaf-branch compost cutinase (LCC) that display outstanding performance in hydrolyzing PET and hold a great potential in further applications. METHOD: Here, we used ICCG to degrade PET particles of various sizes and use the density of attack sites (attack) and kinetic parameters to evaluate the effect of particle size on enzyme degradation efficiency. We are surprised to observe that there is a certain relationship between Km and attack. In order to further confirm the relationship, we obtained three different enzymes (Y95K, M166S and H218S) by site-directed mutagenesis on the basis of ICCG. RESULT: The results confirmed that there was a negative correlation between Km and attack. In addition, we also found that increasing the affinity between the enzyme and the substrate does not necessarily lead to the increase of degradation rate. CONCLUSION: These findings show that the granulation of PET and the selection of appropriate particle size are helpful to improve its industrial application value. At the same time, additional protein engineering to increase ICCG performance is realistic, but it can't be limited to enhance the affinity between enzyme and substrate.
        
Title: Counter-intuitive enhancement of degradation of polyethylene terephthalate through engineering of lowered enzyme binding to solid plastic Mrigwani A, Thakur B, Guptasarma P Ref: Proteins, :, 2023 : PubMed
Degradation of solid polyethylene terephthalate (PET) by leaf branch compost cutinase (LCC) produces various PET-derived degradation intermediates (DIs), in addition to terephthalic acid (TPA), which is the recyclable terminal product of all PET degradation. Although DIs can also be converted into TPA, in solution, by LCC, the TPA that is obtained through enzymatic degradation of PET, in practice, is always contaminated by DIs. Here, we demonstrate that the primary reason for non-degradation of DIs into TPA in solution is the efficient binding of LCC onto the surface of solid PET. Although such binding enhances the degradation of solid PET, it depletes the surrounding solution of enzyme that could otherwise have converted DIs into TPA. To retain a sub-population of enzyme in solution that would mainly degrade DIs, we introduced mutations to reduce the hydrophobicity of areas surrounding LCC's active site, with the express intention of reducing LCC's binding to solid PET. Despite the consequent reduction in invasion and degradation of solid PET, overall levels of production of TPA were ~3.6-fold higher, due to the partitioning of enzyme between solid PET and the surrounding solution, and the consequent heightened production of TPA from DIs. Further, synergy between such mutated LCC (F125L/F243I LCC) and wild-type LCC resulted in even higher yields, and TPA of nearly ~100% purity.
Interfacial enzyme reactions are common in Nature and in industrial settings, including the enzymatic deconstruction of poly(ethylene terephthalate) (PET) waste. Kinetic descriptions of PET hydrolases are necessary for both comparative analyses, discussions of structure-function relations and rational optimization of technical processes. We investigated whether the Sabatier principle could be used for this purpose. Specifically, we compared the kinetics of two well-known PET hydrolases, leaf-branch compost cutinase (LCC) and a cutinase from the bacterium Thermobifida fusca (TfC), when adding different concentrations of the surfactant cetyltrimethylammonium bromide (CTAB). We found that CTAB consistently lowered the strength of enzyme-PET interactions, while its effect on enzymatic turnover was strongly biphasic. Thus, at gradually increasing CTAB concentrations, turnover was initially promoted and subsequently suppressed. This correlation with maximal turnover at an intermediate binding strength was in accordance with the Sabatier principle. One consequence of these results was that both enzymes had too strong intrinsic interaction with PET for optimal turnover, especially TfC, which showed a 20-fold improvement of k (cat) at the maximum. LCC on the other hand had an intrinsic substrate affinity closer to the Sabatier optimum, and the turnover rate was 5-fold improved at weakened substrate binding. Our results showed that the Sabatier principle may indeed rationalize enzymatic PET degradation and support process optimization. Finally, we suggest that future discovery efforts should consider enzymes with weakened substrate binding because strong adsorption seems to limit their catalytic performance.
Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling not only has the potential to reduce the pollution but also to limit the need for fossil fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Poly-ethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and were subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme (Tournier et al., Nature 2020). Here, we use Nuclear Magnetic Resonance (NMR) to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72 degreesC close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group and histidine side chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid (MHET). The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain. STATEMENT OF SIGNIFICANCE: Plastic pollution is a persistent challenge worldwide. The PET polymer, used for plastic bottles, bags and textiles, is not easily degraded. Novel processes aimed at not only destroying the polymer but truly recycling it in a form that gives access again to the same high-quality plastics are needed. Biobased methods relying on enzymes that can depolymerize the PET might constitute an alternative to chemical catalysts to fully recover the monomers needed for renewed production of high quality PET. Here, we follow by solution NMR spectroscopy the LCC enzyme through its four mutations that turn it into a PETase that outperforms all other enzymes so far in a close-to-industrial process, and provide an experimental basis for understanding its improved characteristics.
Enzymatic deconstruction of poly(ethylene terephthalate) (PET) is under intense investigation, given the ability of hydrolase enzymes to depolymerize PET to its constituent monomers near the polymer glass transition temperature. To date, reported PET hydrolases have been sourced from a relatively narrow sequence space. Here, we identify additional PET-active biocatalysts from natural diversity by using bioinformatics and machine learning to mine 74 putative thermotolerant PET hydrolases. We successfully express, purify, and assay 51 enzymes from seven distinct phylogenetic groups; observing PET hydrolysis activity on amorphous PET film from 37 enzymes in reactions spanning pH from 4.5-9.0 and temperatures from 30-70 degreesC. We conduct PET hydrolysis time-course reactions with the best-performing enzymes, where we observe differences in substrate selectivity as function of PET morphology. We employed X-ray crystallography and AlphaFold to examine the enzyme architectures of all 74 candidates, revealing protein folds and accessory domains not previously associated with PET deconstruction. Overall, this study expands the number and diversity of thermotolerant scaffolds for enzymatic PET deconstruction.
The Earth has entered the Anthropocene, which is branded by ubiquitous and devastating environmental pollution from plastics such as polyethylene terephthalate (PET). Ecofriendly and at the same time economical solutions for plastic recycling and reuse are being sought more urgently now than ever. With the possibility to recover its building blocks, the hydrolysis of PET waste by its selective biodegradation with polyester hydrolases is an appealing solution. We demonstrate how changing the dielectric properties of PET films can be used to evaluate the performance of polyester hydrolases. For this purpose, a PET film separates two reaction chambers in an impedimetric setup to quantify the film thickness- and surface area-dependent change in capacitance caused by the enzyme. The derived degradation rates determined for the polyester hydrolases PHL7 and LCC were similar to those obtained by gravimetric and vertical scanning interferometry measurements. Compared to optical methods, this technique is also insensitive to changes in the solution composition. AFM and FEM simulations further supported that impedance spectroscopy is a powerful tool for the detailed analysis of the enzymatic hydrolysis process of PET films. The developed monitoring system enabled both high-temporal resolution and parallel processing suitable for the analysis of the enzymatic degradability of polyester films and the properties of the biocatalysts.
        
Title: Secretory production of an engineered cutinase in Bacillus subtilis for efficient biocatalytic depolymerization of polyethylene terephthalate Oh YR, Jang YA, Song JK, Eom GT Ref: Bioprocess Biosyst Eng, :, 2022 : PubMed
Polyethylene terephthalate (PET) waste has caused serious environmental pollution. Recently, PET depolymerization by enzymes with PET-depolymerizing activity has received attention as a solution to recycle PET. An engineered variant of leaf-branch compost cutinase (293 amino acid), ICCG (Phe243Ile/Asp238Cys/Ser283Cys/Tyr127Gly), showed excellent depolymerizing activity toward PET at 72 degreesC, which was the highest depolymerizing activity and thermo-stability ever reported in previous works. However, this enzyme was only produced by heterologous expression in the cytoplasm of Escherichia coli, which requires complex separation and purification steps. To simplify the purification steps of ICCG, we developed a secretory production system using Bacillus subtilis and its 174 types of N-terminal signal peptides. The recombinant strain expressing ICCG with the signal peptide of serine protease secreted the highest amount (9.4 U/mL) of ICCG. We improved the production of ICCG up to 22.6 U/mL (85 microg/mL) by performing batch fermentation of the selected strain in 2 L working volume using a 5-L fermenter, and prepared the crude ICCG solution by concentrating the culture supernatant. The recombinant ICCG successfully depolymerized a PET film with 37% crystallinity at 37 degreesC and 70 degreesC. In this study, we developed a secretory production system of the engineered cutinase with PET-depolymerizing activity to obtain high amounts of the enzyme by a relatively simple purification method. This system will contribute to the recycling of PET waste via a more efficient and environmentally friendly method based on enzymes with PET-depolymerizing activity.
Bioprocessing of polyester waste has emerged as a promising tool in the quest for a cyclic plastic economy. One key step is the enzymatic breakdown of the polymer, and this entails a complicated pathway with substrates, intermediates, and products of variable size and solubility. We have elucidated this pathway for poly(ethylene terephthalate) (PET) and four enzymes. Specifically, we combined different kinetic measurements and a novel stochastic model and found that the ability to hydrolyze internal bonds in the polymer (endo-lytic activity) was a key parameter for overall enzyme performance. Endo-lytic activity promoted the release of soluble PET fragments with two or three aromatic rings, which, in turn, were broken down with remarkable efficiency (k(cat) /K(M) values of about 10(5) M(-1) s(-1) ) in the aqueous bulk. This meant that approximatly 70 % of the final, monoaromatic products were formed via soluble di- or tri-aromatic intermediates.
Polyethylene terephthalate (PET) is among the most extensively produced plastics, but huge amounts of PET wastes that have accumulated in the environment have become a serious threat to the ecosystem. Applying PET hydrolytic enzymes to depolymerize PET is an attractive measure to manage PET pollution, and searching for more effective enzymes is a prerequisite to achieve this goal. A thermostable cutinase that originates from the leaf-branch compost termed ICCG is the most effective PET hydrolase reported so far. Here, we illustrated the crystal structure of ICCG in complex with the PET analogue, mono(2-hydroxyethyl)terephthalic acid, to reveal the enzyme-substrate interaction network. Furthermore, we applied structure-based engineering to modify ICCG and screened for variants that exhibit higher efficacy than the parental enzyme. As a result, several variants with the measured melting temperature approaching 99 C and elevated PET hydrolytic activity were obtained. Finally, crystallographic analyses were performed to reveal the structural stabilization effects mediated by the introduced mutations. These results are of importance in the context of understanding the mechanism of action of the thermostable PET hydrolytic enzyme and shall be beneficial to the development of PET biodegradation platforms.
        
Title: QM/MM Study of the Enzymatic Biodegradation Mechanism of Polyethylene Terephthalate Boneta S, Arafet K, Moliner V Ref: J Chem Inf Model, :, 2021 : PubMed
The environmental problems derived from the generalized plastic consumption and disposal could find a friendly solution in enzymatic biodegradation. Recently, two hydrolases from Ideonella sakaiensis 201-F6 and the metagenome-derived leaf-branch compost cutinase (LCC), more specially the improved ICCG variant, have revealed degradation activity toward poly ethylene terephthalate (PET). In the present study, the reaction mechanism of this polymer breakage is studied at an atomic level by multiscale QM/MM molecular dynamics simulations, using semiempirical and DFT Hamiltonians to describe the QM region. The obtained free energy surfaces confirmed a characteristic four-step path for both systems, with activation energies in agreement with the experimental observations. Structural analysis of the evolution of the active site along the reaction progress and the study of electrostatic effects generated by the proteins reveal the similarity in the behavior of the active site of these two enzymes. The origin of the apparent better performance of the LCC-ICCG protein over PETase must be due to its capabilities of working at higher temperature and its intrinsic relationship with the crystallinity grade of the polymer. Our results may be useful for the development of more efficient enzymes in the biodegradation of PET.
        
Title: Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET Magalhaes RP, Cunha JM, Sousa SF Ref: Int J Mol Sci, 22:11257, 2021 : PubMed
Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.
        
Title: Fusion of Chitin-Binding Domain From Chitinolyticbacter meiyuanensis SYBC-H1 to the Leaf-Branch Compost Cutinase for Enhanced PET Hydrolysis Xue R, Chen Y, Rong H, Wei R, Cui Z, Zhou J, Dong W, Jiang M Ref: Front Bioeng Biotechnol, 9:762854, 2021 : PubMed
Polyethylene terephthalate (PET) is a mass-produced petroleum-based non-biodegradable plastic that contributes to the global plastic pollution. Recently, biocatalytic degradation has emerged as a viable recycling approach for PET waste, especially with thermophilic polyester hydrolases such as a cutinase (LCC) isolated from a leaf-branch compost metagenome and its variants. To improve the enzymatic PET hydrolysis performance, we fused a chitin-binding domain (ChBD) from Chitinolyticbacter meiyuanensis SYBC-H1 to the C-terminus of the previously reported LCC(ICCG) variant, demonstrating higher adsorption to PET substrates and, as a result, improved degradation performance by up to 19.6% compared to with its precursor enzyme without the binding module. For compare hydrolysis with different binding module, the catalytic activity of LCC(ICCG)-ChBD, LCC(ICCG)-CBM, LCC(ICCG)-PBM and LCC(ICCG)-HFB4 were further investigated with PET substrates of various crystallinity and it showed measurable activity on high crystalline PET with 40% crystallinity. These results indicated that fusing a polymer-binding module to LCC(ICCG) is a promising method stimulating the enzymatic hydrolysis of PET.
        
Title: Computational biotransformation of polyethylene terephthalate by depolymerase: A QM/MM approach Zheng M, Li Y, Dong W, Feng S, Zhang Q, Wang W Ref: J Hazard Mater, 423:127017, 2021 : PubMed
Despite increasing environmental concerns on ever-lasting Polyethylene Terephthalate (PET), its global production is continuously growing. Effective strategies that can completely remove PET from environment are urgently desired. Here biotransformation processes of PET by one of the most effective enzymes, leaf-branch compost cutinase (LCC), were systematically explored with Molecular Dynamics and Quantum Mechanics/Molecular Mechanics approaches. We found that four concerted steps are required to complete the whole catalytic cycle. The last concerted step, deacylation, was determined as the rate-determining step with Boltzmann-weighted average barrier of 13.6 kcal/mol and arithmetic average of 16.1 +/- 2.9 kcal/mol. Interestingly, unprecedented fluctuations of hydrogen bond length during LCC catalyzed transformation process toward PET were found. This fluctuation was also observed in enzyme IsPETase, indicating that it may widely exist in other catalytic triad (Ser-His-Asp) containing enzymes as well. In addition, possible features (bond, angle, dihedral angle and charge) that influence the catalytic reaction were identified and correlations between activation energies and key features were established. Our results present new insights into catalytic mechanism of hydrolases and shed light on the efficient recycling of the ever-lasting PET.
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the natural environment(2). Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging(3). The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties(4). Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse(5). Several PET hydrolase enzymes have been reported, but show limited productivity(6,7). Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme(8,9) from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme(10)) and related improved variants(11-14) that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
        
Title: Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum Yan F, Wei R, Cui Q, Bornscheuer UT, Liu YJ Ref: Microb Biotechnol, :, 2020 : PubMed
Polyethylene terephthalate (PET) is a mass-produced synthetic polyester contributing remarkably to the accumulation of solid plastics waste and plastics pollution in the natural environments. Recently, bioremediation of plastics waste using engineered enzymes has emerged as an eco-friendly alternative approach for the future plastic circular economy. Here we genetically engineered a thermophilic anaerobic bacterium, Clostridium thermocellum, to enable the secretory expression of a thermophilic cutinase (LCC), which was originally isolated from a plant compost metagenome and can degrade PET at up to 70 degrees C. This engineered whole-cell biocatalyst allowed a simultaneous high-level expression of LCC and conspicuous degradation of commercial PET films at 60 degrees C. After 14 days incubation of a batch culture, more than 60% of the initial mass of a PET film (approximately 50 mg) was converted into soluble monomer feedstocks, indicating a markedly higher degradation performance than previously reported whole-cell-based PET biodegradation systems using mesophilic bacteria or microalgae. Our findings provide clear evidence that, compared to mesophilic species, thermophilic microbes are a more promising synthetic microbial chassis for developing future biodegradation processes of PET waste.
        
Title: New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR Ref: Applied Environmental Microbiology, 84:e2773, 2018 : PubMed
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used nowadays. Unfortunately, the polymers accumulate in nature and until now, no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly alpha/beta-hydrolases like cutinases and related enzymes (E.C. 3.1.-). Currently, only a small number of such enzymes are well characterized. Within this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 GB of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the IMG data base detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. Thereby, two novel and thermostable enzymes with high potential for downstream application were in part characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phylum of Actinobacteria, Proteobacteria and Bacteroidetes Within the Proteobacteria, the Beta-, Delta- and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum of the Bacteroidetes appear to be the main host of PET hydrolase genes rather than Actinobacteria or Proteobacteria as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although few PET hydrolases are already known it is still unknown how frequent they appear and which main bacterial phyla they are affiliated with. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed are occurring at very low frequencies in the environment. Further it was possible to link them to phyla which were previously unknown to harbor such enzymes. This work contributes novel knowledge to the phylogenetic relationship, the recent evolution and the global distribution of PET hydrolases. Finally, we describe biochemical traits of four novel PET hydrolases.
Cutinases are polyester hydrolases that show a remarkable capability to hydrolyze polyethylene terephthalate (PET) to its monomeric units. This revelation has stimulated research aimed at developing sustainable and green cutinase-catalyzed PET recycling methods. Leaf and branch compost cutinase (LCC) is particularly suited toward these ends given its relatively high PET hydrolysis activity and thermostability. Any practical enzymatic PET recycling application will require that the protein have kinetic stability at or above the PET glass transition temperature (Tg, i.e., 70 degrees C). This paper elucidates the thermodynamics and kinetics of LCC conformational and colloidal stability. Aggregation emerged as a major contributor that reduces LCC kinetic stability. In its native state, LCC is prone to aggregation owing to electrostatic interactions. Further, with increasing temperature, perturbation of LCC's tertiary structure and corresponding exposure of hydrophobic domains leads to rapid aggregation. Glycosylation was employed in an attempt to impede LCC aggregation. Owing to the presence of three putative N-glycosylation sites, expression of native LCC in Pichia pastoris resulted in the production of glycosylated LCC (LCC-G). LCC-G showed improved stability to native state aggregation while increasing the temperature for thermal induced aggregation by 10 degrees C. Furthermore, stabilization against thermal aggregation resulted in improved catalytic PET hydrolysis both at its optimum temperature and concentration.
Polyurethanes (PU) are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC), TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU) Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 degreesC, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.
TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60 degrees C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC-cutinase produced a 2.4-fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films.
        
Title: Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, Zimmermann W Ref: Biotechnol Bioeng, 113:1658, 2016 : PubMed
Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65 degrees C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. (c) 2016 Wiley Periodicals, Inc.
        
Title: Crystal Structure and Thermodynamic and Kinetic Stability of Metagenome-Derived LC-Cutinase Sulaiman S, You DJ, Kanaya E, Koga Y, Kanaya S Ref: Biochemistry, 53:1858, 2014 : PubMed
The crystal structure of metagenome-derived LC-cutinase with polyethylene terephthalate (PET)-degrading activity was determined at 1.5 A resolution. The structure strongly resembles that of Thermobifida alba cutinase. Ser165, Asp210, and His242 form the catalytic triad. Thermal denaturation and guanidine hydrochloride (GdnHCl)-induced unfolding of LC-cutinase were analyzed at pH 8.0 by circular dichroism spectroscopy. The midpoint of the transition of the thermal denaturation curve, T1/2, and that of the GdnHCl-induced unfolding curve, Cm, at 30 degrees C were 86.2 degrees C and 4.02 M, respectively. The free energy change of unfolding in the absence of GdnHCl, DeltaG(H2O), was 41.8 kJ mol(-1) at 30 degrees C. LC-cutinase unfolded very slowly in GdnHCl with an unfolding rate, ku(H2O), of 3.28 x 10(-6) s(-1) at 50 degrees C. These results indicate that LC-cutinase is a kinetically robust protein. Nevertheless, the optimal temperature for the activity of LC-cutinase toward p-nitrophenyl butyrate (50 degrees C) was considerably lower than the T1/2 value. It increased by 10 degrees C in the presence of 1% polyethylene glycol (PEG) 1000. It also increased by at least 20 degrees C when PET was used as a substrate. These results suggest that the active site is protected from a heat-induced local conformational change by binding of PEG or PET. LC-cutinase contains one disulfide bond between Cys275 and Cys292. To examine whether this disulfide bond contributes to the thermodynamic and kinetic stability of LC-cutinase, C275/292A-cutinase without this disulfide bond was constructed. Thermal denaturation studies and equilibrium and kinetic studies of the GdnHCl-induced unfolding of C275/292A-cutinase indicate that this disulfide bond contributes not only to the thermodynamic stability but also to the kinetic stability of LC-cutinase.
        
Title: Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S Ref: Applied Environmental Microbiology, 78:1556, 2012 : PubMed
The gene encoding a cutinase homolog, LC-cutinase, was cloned from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. LC-cutinase shows the highest amino acid sequence identity of 59.7% to Thermomonospora curvata lipase. It also shows the 57.4% identity to Thermobifida fusca cutinase. When LC-cutinase without a putative signal peptide was secreted to the periplasm of Escherichia coli cells with the assistance of the pelB leader sequence, more than 50% of the recombinant protein, termed LC-cutinase*, was excreted into the extracellular medium. It was purified and characterized. LC-cutinase* hydrolyzed various fatty acid monoesters with acyl chain lengths of 2 to 18, with a preference for short-chain substrates (C(4) substrate at most) most optimally at pH 8.5 and 50 degrees C, but could not hydrolyze olive oil. It lost activity with half-lives of 40 min at 70 degrees C and 7 min at 80 degrees C. LC-cutinase* had an ability to degrade poly(epsilon-caprolactone) and polyethylene terephthalate (PET). The specific PET-degrading activity of LC-cutinase* was determined to be 12 mg/h/mg of enzyme (2.7 mg/h/mukat of pNP-butyrate-degrading activity) at pH 8.0 and 50 degrees C. This activity is higher than those of the bacterial and fungal cutinases reported thus far, suggesting that LC-cutinase* not only serves as a good model for understanding the molecular mechanism of PET-degrading enzyme but also is potentially applicable for surface modification and degradation of PET.