(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Corynebacteriales: NE > Gordoniaceae: NE > Gordonia: NE > Gordonia sp. P8219: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Gordonia sp. YC-JH1: N, E.
Dietzia timorensis: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MNCSIVIVHRKALSVPSSSITQKFHTVDVKGVQTRYFDDGQDKDPILLIH GGHFGFFIPVGIESWGNVLEDFGEYGRVLAVDKLGQGETGLPLNDEDWTV DAVAEHVANFATQLGLKNLTLVGHSRGGMTAVLLALKYPEMVKKLVIISS ATAAPAPPVGTDMDFYERVERTAPGGSAELIRHYHAAQAVNEGDLPEDYI GIATKWLESEKQLDAVAGYARNAEEHWLPSLSEGRRWVQERLADAGIPVP TLVVWGVNDRSAPVSMGKGLFDLIAANTLDSSLYLINNAGHHVFSDQREK FNAAVGAFISL
Phthalate acid esters (PAEs), a group of xenobiotic compounds used extensively as plasticizers, have attracted increasing concern for adverse effects to human health and the environment. Microbial degradation relying on PAE hydrolases is a promising treatment. However, only a limited number of PAE hydrolases were characterized to date. Here we report the structures of MehpH, a monoalkyl phthalate (MBP) hydrolase that catalyzes the reaction of MBP to phthalic acid and the corresponding alcohol, in apo and ligand-bound form. The structures reveal a positively-charged catalytic center, complementary to the negatively-charged carboxyl group on MBP, and a penetrating tunnel that serves as exit of alcohol. The study provides a first glimpse into the enzyme-substrate binding model for PAE hydrolases, leading strong support to the development of better enzymes in the future.
        
Title: Excellent Degradation Performance of a Versatile Phthalic Acid Esters-Degrading Bacterium and Catalytic Mechanism of Monoalkyl Phthalate Hydrolase Fan S, Wang J, Yan Y, Jia Y Ref: Int J Mol Sci, 19:, 2018 : PubMed
Despites lots of characterized microorganisms that are capable of degrading phthalic acid esters (PAEs), there are few isolated strains with high activity towards PAEs under a broad range of environmental conditions. In this study, Gordonia sp. YC-JH1 had advantages over its counterparts in terms of di(2-ethylhexyl) phthalate (DEHP) degradation performance. It possessed an excellent degradation ability in the range of 20(-)50 degrees C, pH 5.0(-)12.0, or 0(-)8% NaCl with the optimal degradation condition 40 degrees C and pH 10.0. Therefore, strain YC-JH1 appeared suitable for bioremediation application at various conditions. Metabolites analysis revealed that DEHP was sequentially hydrolyzed by strain YC-JH1 to mono(2-ethylhexyl) phthalate (MEHP) and phthalic acid (PA). The hydrolase MphG1 from strain YC-JH1 hydrolyzed monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-n-hexyl phthalate (MHP), and MEHP to PA. According to molecular docking and molecular dynamics simulation between MphG1 and monoalkyl phthalates (MAPs), some key residues were detected, including the catalytic triad (S125-H291-D259) and the residues R126 and F54 potentially binding substrates. The mutation of these residues accounted for the reduced activity. Together, the mechanism of MphG1 catalyzing MAPs was elucidated, and would shed insights into catalytic mechanism of more hydrolases.
Gordonia sp. strain P8219, a strain able to decompose di-2-ethylhexyl phthalate, was isolated from machine oil-contaminated soil. Mono-2-ethylhexyl phthalate hydrolase was purified from cell extracts of this strain. This enzyme was a 32,164-Da homodimeric protein, and it effectively hydrolyzed monophthalate esters, such as monoethyl, monobutyl, monohexyl, and mono-2-ethylhexyl phthalate. The K(m) and V(max) values for mono-2-ethylhexyl phthalate were 26.9 +/- 4.3 microM and 18.1 +/- 0.9 micromol/min . mg protein, respectively. The deduced amino acid sequence of the enzyme exhibited less than 30% homology with those of meta-cleavage hydrolases which are serine hydrolases but exhibited no significant homology with the sequences of serine esterases. The pentapeptide motif GXSXG, which is conserved in serine hydrolases, was present in the sequence. The enzymatic properties and features of the primary structure suggested that this enzyme is a novel enzyme belonging to an independent group of serine hydrolases.