Post-GPI (Glycophosphatidylinositol; Glycosylphosphatidylinositol) attachment to proteins factor 1. The sequences found in this family are similar to PGAP1 (Q765A7_RAT). This is an endoplasmic reticulum membrane protein with a catalytic serine containing motif that is conserved in a number of lipases. PGAP1 functions as a GPI inositol-deacylase; this deacylation is important for the efficient transport of GPI-anchored proteins from the endoplasmic reticulum to the Golgi body. This family consists of several hypothetical bacterial proteins of unknown function. Members of this family have an alpha/beta hydrolase fold. The type VI lipase effectors Tle1-Tle5 secreted by the bacterial type VI secretion system (T6SS) have recently been identified as antibacterial effectors that hydrolyze membrane phospholipids. The Tle1-4 display phospholipase A1 and A2 (PLA1) (PLA2) activities. Tle1 belongs to Duf_2235 family (now T6SS-TLE1), TLE2 to Lipase_3, TLE3 to alpha/ beta hydrolase (now T6SS-TLE3) and here Tle4 belongs to PGAP1. There are two human genes in this family. One is SERAC1. Mutations of SERAC1 causes MEGDEL syndrome, a recessive disorder of dystonia and deafness with encephalopathy and Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. Clinical features included psychomotor retardation, recurrent infections in infancy, hypoglycemia, spasticity, dystonia, sensorineural deafness, brain atrophy, and lesions on brain imaging. Laboratory studies showed increased serum lactate and alanine, urinary 3-MGA, mitochondrial oxidative phosphorylation defects, abnormal mitochondria, an abnormal phosphatidylglycerol and cardiolipin spectrum in fibroblasts, and abnormal accumulation of unesterified cholesterol within cells.The other is PGAP1 Mutations in PGAP1 causes Mental retardation, autosomal recessive 42 MRT42
1 moreTitle: The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa Lu D, Zheng Y, Liao N, Wei L, Xu B, Liu X, Liu J Ref: Acta Crystallographica D Biol Crystallogr, 70:3233, 2014 : PubMed
The type VI secretion system (T6SS) has recently been demonstrated to mediate interbacterial competition and to discriminate between self and nonself. T6SS+ bacteria employ toxic effectors to inhibit rival cells and concurrently use effector cognate immunity proteins to protect their sibling cells. The effector and immunity pairs (E-I pairs) endow the bacteria with a great advantage in niche competition. Tle4-Tli4 (PA1510-PA1509) is a newly identified E-I pair that is controlled by H2-T6SS in Pseudomonas aeruginosa. Tle4 exhibits phospholipase activity, which destroys the cell membrane of rival cells, and the periplasm-located Tli4 in donor cells eliminates this toxic effect of Tle4. In this paper, the structure of the Tle4-Tli4 complex is reported at 1.75 A resolution. Tle4 consists of two domains: a conserved alpha/beta-hydrolase domain and an unusual cap domain in which two lid regions (lid1 and lid2) display a closed conformation that buries the catalytic triad in a deep funnel. Tli4 also displays a two-domain structure, in which a large lobe and a small lobe form a crab claw-like conformation. Tli4 uses this crab claw to grasp the cap domain of Tle4, especially the lid2 region, which prevents the interfacial activation of Tle4 and thus causes enzymatic dysfunction of Tle4 in sister cells.
Many eukaryotic cell-surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). There are at least 26 genes involved in biosynthesis and remodeling of GPI anchors. Hypomorphic coding mutations in seven of these genes have been reported to cause decreased expression of GPI anchored proteins (GPI-APs) on the cell surface and to cause autosomal-recessive forms of intellectual disability (ARID). We performed homozygosity mapping and exome sequencing in a family with encephalopathy and non-specific ARID and identified a homozygous 3 bp deletion (p.Leu197del) in the GPI remodeling gene PGAP1. PGAP1 was not described in association with a human phenotype before. PGAP1 is a deacylase that removes an acyl-chain from the inositol of GPI anchors in the endoplasmic reticulum immediately after attachment of GPI to proteins. In silico prediction and molecular modeling strongly suggested a pathogenic effect of the identified deletion. The expression levels of GPI-APs on B lymphoblastoid cells derived from an affected person were normal. However, when those cells were incubated with phosphatidylinositol-specific phospholipase C (PI-PLC), GPI-APs were cleaved and released from B lymphoblastoid cells from healthy individuals whereas GPI-APs on the cells from the affected person were totally resistant. Transfection with wild type PGAP1 cDNA restored the PI-PLC sensitivity. These results indicate that GPI-APs were expressed with abnormal GPI structure due to a null mutation in the remodeling gene PGAP1. Our results add PGAP1 to the growing list of GPI abnormalities and indicate that not only the cell surface expression levels of GPI-APs but also the fine structure of GPI-anchors is important for the normal neurological development.
        
Title: Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p Tanaka S, Maeda Y, Tashima Y, Kinoshita T Ref: Journal of Biological Chemistry, 279:14256, 2004 : PubMed
The inositol moiety of mammalian glycosylphosphatidylinositol (GPI) is acylated at an early step in GPI biosynthesis. The inositol acylation is essential for the generation of mature GPI capable of attachment to proteins. However, the acyl group is usually absent from GPI-anchored proteins (GPI-APs) on the cell surface due to inositol deacylation that occurs in the endoplasmic reticulum (ER) soon after GPI-anchor attachment. Mammalian GPI inositol-deacylase has not been cloned, and the biological significance of the deacylation has been unclear. Here we report a GPI inositol-deacylase-deficient Chinese hamster ovary cell line established by taking advantage of resistance to phosphatidylinositol-specific phospholipase C and the gene responsible, which was termed PGAP1 for Post GPI Attachment to Proteins 1. PGAP1 encoded an ER-associated, 922-amino acid membrane protein bearing a lipase consensus motif. Substitution of a conserved putative catalytic serine with alanine resulted in a complete loss of function, indicating that PGAP1 is the GPI inositol-deacylase. The mutant cells showed a clear delay in the maturation of GPI-APs in the Golgi and accumulation of GPI-APs in the ER. Thus, the GPI inositol deacylation is important for efficient transport of GPI-APs from the ER to the Golgi.
        
1 lessTitle: The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa Lu D, Zheng Y, Liao N, Wei L, Xu B, Liu X, Liu J Ref: Acta Crystallographica D Biol Crystallogr, 70:3233, 2014 : PubMed
The type VI secretion system (T6SS) has recently been demonstrated to mediate interbacterial competition and to discriminate between self and nonself. T6SS+ bacteria employ toxic effectors to inhibit rival cells and concurrently use effector cognate immunity proteins to protect their sibling cells. The effector and immunity pairs (E-I pairs) endow the bacteria with a great advantage in niche competition. Tle4-Tli4 (PA1510-PA1509) is a newly identified E-I pair that is controlled by H2-T6SS in Pseudomonas aeruginosa. Tle4 exhibits phospholipase activity, which destroys the cell membrane of rival cells, and the periplasm-located Tli4 in donor cells eliminates this toxic effect of Tle4. In this paper, the structure of the Tle4-Tli4 complex is reported at 1.75 A resolution. Tle4 consists of two domains: a conserved alpha/beta-hydrolase domain and an unusual cap domain in which two lid regions (lid1 and lid2) display a closed conformation that buries the catalytic triad in a deep funnel. Tli4 also displays a two-domain structure, in which a large lobe and a small lobe form a crab claw-like conformation. Tli4 uses this crab claw to grasp the cap domain of Tle4, especially the lid2 region, which prevents the interfacial activation of Tle4 and thus causes enzymatic dysfunction of Tle4 in sister cells.
Many eukaryotic cell-surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). There are at least 26 genes involved in biosynthesis and remodeling of GPI anchors. Hypomorphic coding mutations in seven of these genes have been reported to cause decreased expression of GPI anchored proteins (GPI-APs) on the cell surface and to cause autosomal-recessive forms of intellectual disability (ARID). We performed homozygosity mapping and exome sequencing in a family with encephalopathy and non-specific ARID and identified a homozygous 3 bp deletion (p.Leu197del) in the GPI remodeling gene PGAP1. PGAP1 was not described in association with a human phenotype before. PGAP1 is a deacylase that removes an acyl-chain from the inositol of GPI anchors in the endoplasmic reticulum immediately after attachment of GPI to proteins. In silico prediction and molecular modeling strongly suggested a pathogenic effect of the identified deletion. The expression levels of GPI-APs on B lymphoblastoid cells derived from an affected person were normal. However, when those cells were incubated with phosphatidylinositol-specific phospholipase C (PI-PLC), GPI-APs were cleaved and released from B lymphoblastoid cells from healthy individuals whereas GPI-APs on the cells from the affected person were totally resistant. Transfection with wild type PGAP1 cDNA restored the PI-PLC sensitivity. These results indicate that GPI-APs were expressed with abnormal GPI structure due to a null mutation in the remodeling gene PGAP1. Our results add PGAP1 to the growing list of GPI abnormalities and indicate that not only the cell surface expression levels of GPI-APs but also the fine structure of GPI-anchors is important for the normal neurological development.
Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking.
        
Title: Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p Tanaka S, Maeda Y, Tashima Y, Kinoshita T Ref: Journal of Biological Chemistry, 279:14256, 2004 : PubMed
The inositol moiety of mammalian glycosylphosphatidylinositol (GPI) is acylated at an early step in GPI biosynthesis. The inositol acylation is essential for the generation of mature GPI capable of attachment to proteins. However, the acyl group is usually absent from GPI-anchored proteins (GPI-APs) on the cell surface due to inositol deacylation that occurs in the endoplasmic reticulum (ER) soon after GPI-anchor attachment. Mammalian GPI inositol-deacylase has not been cloned, and the biological significance of the deacylation has been unclear. Here we report a GPI inositol-deacylase-deficient Chinese hamster ovary cell line established by taking advantage of resistance to phosphatidylinositol-specific phospholipase C and the gene responsible, which was termed PGAP1 for Post GPI Attachment to Proteins 1. PGAP1 encoded an ER-associated, 922-amino acid membrane protein bearing a lipase consensus motif. Substitution of a conserved putative catalytic serine with alanine resulted in a complete loss of function, indicating that PGAP1 is the GPI inositol-deacylase. The mutant cells showed a clear delay in the maturation of GPI-APs in the Golgi and accumulation of GPI-APs in the ER. Thus, the GPI inositol deacylation is important for efficient transport of GPI-APs from the ER to the Golgi.