1h-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) Oxygenases without requirement for cofactors or metal ions, catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Composed of a classical alpha/beta-hydrolase fold core domain with a cap domain. Organic substrates undergo selective deprotonation of their hydroxyl group by a His/Asp charge-relay system affording the generation of electron-donating species. The oxyanion hole of the alpha/beta-hydrolase fold, is utilized here to host and control oxygen chemistry involving a peroxide anion intermediate. Product release occurs by proton back transfer from the catalytic histidine.It is a non-nucleophilic general-base mechanism
5 moreTitle: Definition of an alpha/beta-hydrolase fold subfamily comprising Pseudomonas quinolone signal cleaving dioxygenases Wullich SC, Arranz San Martin A, Fetzner S Ref: Applied Environmental Microbiology, :, 2020 : PubMed
The quinolone ring is a common core structure of natural products exhibiting antimicrobial, cytotoxic, and signaling activities. A prominent example is the Pseudomonas quinolone signal (PQS), a quorum sensing signal molecule involved in the regulation of virulence of P. aeruginosa The key reaction to quinolone inactivation and biodegradation is the cleavage of the 3-hydroxy-4(1H)-quinolone ring, catalyzed by dioxygenases (HQDs) which are members of the alpha/beta-hydrolase fold superfamily. The alpha/beta-hydrolase fold core domain consists of a beta-sheet surrounded by alpha-helices, with an active site usually containing a catalytic triad comprising a nucleophilic residue, an acidic residue, and a histidine. The nucleophile is located at the tip of a sharp turn called the "nucleophilic elbow". In this work, we developed a search workflow for the identification of HQD proteins from databases. Search and validation criteria include a [H-x(2)-W] motif at the nucleophilic elbow, a [HFP-x(4)-P] motif comprising the catalytic histidine, the presence of a helical cap domain, the positioning of the triad's acidic residue at the end of beta-strand 6, and a set of conserved hydrophobic residues contributing to the substrate cavity. The 161 candidate proteins identified from the UniProtKB database originate from environmental and plant-associated microorganisms from all domains of life. Verification and characterization of HQD activity of 9 new candidate proteins confirmed the reliability of the search strategy, and suggested residues correlating with distinct substrate preferences. Among the new HQDs, PQS dioxygenases from Nocardia farcinica, N. cyriacigeorgica, and Streptomyces bingchenggensis likely are part of a catabolic pathway for alkylquinolone utilization.ImportanceFunctional annotation of protein sequences is a major requirement for the investigation of metabolic pathways and the identification of sought-after biocatalysts. To identify heterocyclic ring-cleaving dioxygenases within the huge superfamily of alpha/beta-hydrolase fold proteins, we defined search and validation criteria for the primarily motif-based identification of 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQD). HQDs are key enzymes for the inactivation of metabolites which can have signaling, antimicrobial, or cytotoxic functions. The HQD candidates detected in this study occur particularly in environmental and plant-associated microorganisms. Because HQDs active towards the Pseudomonas quinolone signal (PQS) likely contribute to interactions within microbial communities and modulate the virulence of Pseudomonas aeruginosa, we analyzed the catalytic properties of a PQS-cleaving subset of HQDs, and specified characteristics to identify PQS-cleaving dioxygenases within the HQD family.
        
Title: Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqdC, a mycobacterial dioxygenase of the alpha/beta-hydrolase fold family Wullich SC, Kobus S, Wienhold M, Hennecke U, Smits SHJ, Fetzner S Ref: J Struct Biol, 207:287, 2019 : PubMed
The cofactor-less dioxygenase AqdC of Mycobacteroides abscessus catalyzes the cleavage and thus inactivation of the Pseudomonas quinolone signal (PQS, 2-heptyl-3-hydroxy-4(1H)-quinolone), which plays a central role in the regulation of virulence factor production by Pseudomonas aeruginosa. We present here the crystal structures of AqdC in its native state and in complex with the PQS cleavage product N-octanoylanthranilic acid, and of mutant AqdC proteins in complex with PQS. AqdC possesses an alpha/beta-hydrolase fold core domain with additional helices forming a cap domain. The protein is traversed by a bipartite tunnel, with a funnel-like entry section leading to an elliptical substrate cavity where PQS positioning is mediated by a combination of hydrophobic interactions and hydrogen bonds, with the substrate's C4 carbonyl and C3 hydroxyl groups tethered by His97 and the catalytic His246, respectively. The side chain of the AqdC-bound product extends deeper into the "alkyl tail section" of the tunnel than PQS, tentatively suggesting product exit via this part of the tunnel. AqdC prefers PQS over congeners with shorter alkyl substituents at C2. Kinetic data confirmed the strict requirement of the active-site base His246 for catalysis, and suggested that evolution of the canonical nucleophile/His/Asp catalytic triad of the hydrolases to an Ala/His/Asp triad is favorable for catalyzing dioxygenolytic PQS ring cleavage.
        
Title: Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold Steiner RA, Janssen HJ, Roversi P, Oakley AJ, Fetzner S Ref: Proc Natl Acad Sci U S A, 107:657, 2010 : PubMed
Enzymatic catalysis of oxygenation reactions in the absence of metal or organic cofactors is a considerable biochemical challenge. The CO-forming 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus Ru61a and 1-H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) from Pseudomonas putida 33/1 are homologous cofactor-independent dioxygenases involved in the breakdown of N-heteroaromatic compounds. To date, they are the only dioxygenases suggested to belong to the alpha/beta-hydrolase fold superfamily. Members of this family typically catalyze hydrolytic processes rather than oxygenation reactions. We present here the crystal structures of both HOD and QDO in their native state as well as the structure of HOD in complex with its natural 1-H-3-hydroxy-4-oxoquinaldine substrate, its N-acetylanthranilate reaction product, and chloride as dioxygen mimic. HOD and QDO are structurally very similar. They possess a classical alpha/beta-hydrolase fold core domain additionally equipped with a cap domain. Organic substrates bind in a preorganized active site with an orientation ideally suited for selective deprotonation of their hydroxyl group by a His/Asp charge-relay system affording the generation of electron-donating species. The "oxyanion hole" of the alpha/beta-hydrolase fold, typically employed to stabilize the tetrahedral intermediate in ester hydrolysis reactions, is utilized here to host and control oxygen chemistry, which is proposed to involve a peroxide anion intermediate. Product release by proton back transfer from the catalytic histidine is driven by minimization of intramolecular charge repulsion. Structural and kinetic data suggest a nonnucleophilic general-base mechanism. Our analysis provides a framework to explain cofactor-independent dioxygenation within a protein architecture generally employed to catalyze hydrolytic reactions.
        
5 lessTitle: Definition of an alpha/beta-hydrolase fold subfamily comprising Pseudomonas quinolone signal cleaving dioxygenases Wullich SC, Arranz San Martin A, Fetzner S Ref: Applied Environmental Microbiology, :, 2020 : PubMed
The quinolone ring is a common core structure of natural products exhibiting antimicrobial, cytotoxic, and signaling activities. A prominent example is the Pseudomonas quinolone signal (PQS), a quorum sensing signal molecule involved in the regulation of virulence of P. aeruginosa The key reaction to quinolone inactivation and biodegradation is the cleavage of the 3-hydroxy-4(1H)-quinolone ring, catalyzed by dioxygenases (HQDs) which are members of the alpha/beta-hydrolase fold superfamily. The alpha/beta-hydrolase fold core domain consists of a beta-sheet surrounded by alpha-helices, with an active site usually containing a catalytic triad comprising a nucleophilic residue, an acidic residue, and a histidine. The nucleophile is located at the tip of a sharp turn called the "nucleophilic elbow". In this work, we developed a search workflow for the identification of HQD proteins from databases. Search and validation criteria include a [H-x(2)-W] motif at the nucleophilic elbow, a [HFP-x(4)-P] motif comprising the catalytic histidine, the presence of a helical cap domain, the positioning of the triad's acidic residue at the end of beta-strand 6, and a set of conserved hydrophobic residues contributing to the substrate cavity. The 161 candidate proteins identified from the UniProtKB database originate from environmental and plant-associated microorganisms from all domains of life. Verification and characterization of HQD activity of 9 new candidate proteins confirmed the reliability of the search strategy, and suggested residues correlating with distinct substrate preferences. Among the new HQDs, PQS dioxygenases from Nocardia farcinica, N. cyriacigeorgica, and Streptomyces bingchenggensis likely are part of a catabolic pathway for alkylquinolone utilization.ImportanceFunctional annotation of protein sequences is a major requirement for the investigation of metabolic pathways and the identification of sought-after biocatalysts. To identify heterocyclic ring-cleaving dioxygenases within the huge superfamily of alpha/beta-hydrolase fold proteins, we defined search and validation criteria for the primarily motif-based identification of 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQD). HQDs are key enzymes for the inactivation of metabolites which can have signaling, antimicrobial, or cytotoxic functions. The HQD candidates detected in this study occur particularly in environmental and plant-associated microorganisms. Because HQDs active towards the Pseudomonas quinolone signal (PQS) likely contribute to interactions within microbial communities and modulate the virulence of Pseudomonas aeruginosa, we analyzed the catalytic properties of a PQS-cleaving subset of HQDs, and specified characteristics to identify PQS-cleaving dioxygenases within the HQD family.
        
Title: Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqdC, a mycobacterial dioxygenase of the alpha/beta-hydrolase fold family Wullich SC, Kobus S, Wienhold M, Hennecke U, Smits SHJ, Fetzner S Ref: J Struct Biol, 207:287, 2019 : PubMed
The cofactor-less dioxygenase AqdC of Mycobacteroides abscessus catalyzes the cleavage and thus inactivation of the Pseudomonas quinolone signal (PQS, 2-heptyl-3-hydroxy-4(1H)-quinolone), which plays a central role in the regulation of virulence factor production by Pseudomonas aeruginosa. We present here the crystal structures of AqdC in its native state and in complex with the PQS cleavage product N-octanoylanthranilic acid, and of mutant AqdC proteins in complex with PQS. AqdC possesses an alpha/beta-hydrolase fold core domain with additional helices forming a cap domain. The protein is traversed by a bipartite tunnel, with a funnel-like entry section leading to an elliptical substrate cavity where PQS positioning is mediated by a combination of hydrophobic interactions and hydrogen bonds, with the substrate's C4 carbonyl and C3 hydroxyl groups tethered by His97 and the catalytic His246, respectively. The side chain of the AqdC-bound product extends deeper into the "alkyl tail section" of the tunnel than PQS, tentatively suggesting product exit via this part of the tunnel. AqdC prefers PQS over congeners with shorter alkyl substituents at C2. Kinetic data confirmed the strict requirement of the active-site base His246 for catalysis, and suggested that evolution of the canonical nucleophile/His/Asp catalytic triad of the hydrolases to an Ala/His/Asp triad is favorable for catalyzing dioxygenolytic PQS ring cleavage.
Dioxygenases catalyze a diverse range of chemical reactions that involve the incorporation of oxygen into a substrate and typically use a transition metal or organic cofactor for reaction. Bacterial (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) belongs to a class of oxygenases able to catalyze this energetically unfavorable reaction without any cofactor. In the quinaldine metabolic pathway, HOD breaks down its natural N-heteroaromatic substrate using a mechanism that is still incompletely understood. Experimental and computational approaches were combined to study the initial step of the catalytic cycle. We have investigated the role of the active site His-251/Asp-126 dyad, proposed to be involved in substrate hydroxyl group deprotonation, a critical requirement for subsequent oxygen reaction. The pH profiles obtained under steady-state conditions for the H251A and D126A variants show a strong pH effect on their kcat and kcat/Km constants, with a decrease in kcat/Km of 5500- and 9-fold at pH 10.5, respectively. Substrate deprotonation studies under transient-state conditions show that this step is not rate-limiting and yield a pKa value of approximately 7.2 for WT HOD. A large solvent isotope effect was found, and the pKa value was shifted to approximately 8.3 in D2O. Crystallographic and computational studies reveal that the mutations have a minor effect on substrate positioning. Computational work shows that both His-251 and Asp-126 are essential for the proton transfer driving force of the initial reaction. This multidisciplinary study offers unambiguous support to the view that substrate deprotonation, driven by the His/Asp dyad, is an essential requirement for its activation.
        
Title: Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold Steiner RA, Janssen HJ, Roversi P, Oakley AJ, Fetzner S Ref: Proc Natl Acad Sci U S A, 107:657, 2010 : PubMed
Enzymatic catalysis of oxygenation reactions in the absence of metal or organic cofactors is a considerable biochemical challenge. The CO-forming 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus Ru61a and 1-H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) from Pseudomonas putida 33/1 are homologous cofactor-independent dioxygenases involved in the breakdown of N-heteroaromatic compounds. To date, they are the only dioxygenases suggested to belong to the alpha/beta-hydrolase fold superfamily. Members of this family typically catalyze hydrolytic processes rather than oxygenation reactions. We present here the crystal structures of both HOD and QDO in their native state as well as the structure of HOD in complex with its natural 1-H-3-hydroxy-4-oxoquinaldine substrate, its N-acetylanthranilate reaction product, and chloride as dioxygen mimic. HOD and QDO are structurally very similar. They possess a classical alpha/beta-hydrolase fold core domain additionally equipped with a cap domain. Organic substrates bind in a preorganized active site with an orientation ideally suited for selective deprotonation of their hydroxyl group by a His/Asp charge-relay system affording the generation of electron-donating species. The "oxyanion hole" of the alpha/beta-hydrolase fold, typically employed to stabilize the tetrahedral intermediate in ester hydrolysis reactions, is utilized here to host and control oxygen chemistry, which is proposed to involve a peroxide anion intermediate. Product release by proton back transfer from the catalytic histidine is driven by minimization of intramolecular charge repulsion. Structural and kinetic data suggest a nonnucleophilic general-base mechanism. Our analysis provides a framework to explain cofactor-independent dioxygenation within a protein architecture generally employed to catalyze hydrolytic reactions.
        
Title: Oxygenases without requirement for cofactors or metal ions Fetzner S Ref: Applied Microbiology & Biotechnology, 60:243, 2002 : PubMed
Mono- and dioxygenases usually depend on a transition metal or an organic cofactor to activate dioxygen, or their organic substrate, or both. This review points out that there are at least two separate families of oxygenases without any apparent requirement for cofactors or metal ions: the quinone-forming monooxygenases which are important 'tailoring enzymes' in the biosynthesis of several types of aromatic polyketide antibiotics, and the bacterial dioxygenases involved in the degradation of distinct quinoline derivatives, catalyzing the 2,4-dioxygenolytic cleavage of 3-hydroxy-4-quinolones with concomitant release of carbon monoxide. The quinone-forming monooxygenases might be useful for the modification of polyketide structures, either by using them as biocatalysts, or by employing combinatorial biosynthesis approaches. Cofactor-less oxygenases present the mechanistically intriguing problem of how dioxygen is activated for catalysis. However, the reactions catalyzed by these enzymes are poorly understood in mechanistic terms. Formation of a protein radical and a substrate-derived radical, or direct electron transfer from a deprotonated substrate to molecular oxygen to form a caged radical pair may be discussed as hypothetical mechanisms. The latter reaction route is expected for substrates that can easily donate an electron to dioxygen, and requires the ability of the enzyme to stabilize anionic intermediates. Histidine residues found to be catalytically relevant in both types of cofactor-less oxygenases might be involved in substrate deprotonation and/or electrostatic stabilization.
        
Title: Site-directed mutagenesis of potential catalytic residues in 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase, and hypothesis on the catalytic mechanism of 2,4-dioxygenolytic ring cleavage Fischer F, Fetzner S Ref: FEMS Microbiology Letters, 190:21, 2000 : PubMed
1H-3-Hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) is a cofactor-free dioxygenase proposed to belong to the alpha/beta hydrolase fold superfamily of enzymes. Alpha/beta Hydrolases contain a highly conserved catalytic triad (nucleophile-acidic residue-histidine). We previously identified a corresponding catalytically essential histidine residue in Qdo. However, as shown by amino acid replacements through site-directed mutagenesis, nucleophilic and acidic residues of Qdo considered as possible triad residues were not absolutely required for activity. This suggests that Qdo does not contain the canonical catalytic triad of the alpha/beta hydrolase fold enzymes. Some radical trapping agents affected the Qdo-catalyzed reaction. A hypothetical mechanism of Qdo-catalyzed dioxygenation of 1H-3-hydroxy-4-oxoquinoline is compared with the dioxygenation of FMNH2 catalyzed by bacterial luciferase, which also uses a histidine residue as catalytic base.
        
Title: Bacterial 2,4-dioxygenases: new members of the alpha/beta hydrolase-fold superfamily of enzymes functionally related to serine hydrolases Fischer F, Kunne S, Fetzner S Ref: Journal of Bacteriology, 181:5725, 1999 : PubMed
1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) from Pseudomonas putida 33/1 and 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) from Arthrobacter ilicis Ru61a catalyze an N-heterocyclic-ring cleavage reaction, generating N-formylanthranilate and N-acetylanthranilate, respectively, and carbon monoxide. Amino acid sequence comparisons between Qdo, Hod, and a number of proteins belonging to the alpha/beta hydrolase-fold superfamily of enzymes and analysis of the similarity between the predicted secondary structures of the 2,4-dioxygenases and the known secondary structure of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 strongly suggested that Qdo and Hod are structurally related to the alpha/beta hydrolase-fold enzymes. The residues S95 and H244 of Qdo were found to be arranged like the catalytic nucleophilic residue and the catalytic histidine, respectively, of the alpha/beta hydrolase-fold enzymes. Investigation of the potential functional significance of these and other residues of Qdo through site-directed mutagenesis supported the hypothesis that Qdo is structurally as well as functionally related to serine hydrolases, with S95 being a possible catalytic nucleophile and H244 being a possible catalytic base. A hypothetical reaction mechanism for Qdo-catalyzed 2,4-dioxygenolysis, involving formation of an ester bond between the catalytic serine residue and the carbonyl carbon of the substrate and subsequent dioxygenolysis of the covalently bound anionic intermediate, is discussed.
        
Title: 2,4-dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Ru61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1 Bauer I, Max N, Fetzner S, Lingens F Ref: European Journal of Biochemistry, 240:576, 1996 : PubMed
1H-3-Hydroxy-4-oxoquinaldine 2,4-dioxygenase (MeQDO) was purified from quinaldine-grown Arthrobacter sp. Ru61a. It was enriched 59-fold in a yield of 22%, and its properties were compared with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) purified from Pseudomonas putida 33/1. The enzyme-catalyzed conversions were performed in an (18O)O2/(16O)O2 atmosphere. Two oxygen atoms of either (18O)O2 or (16O)O2 were incorporated at C2 and C4 of the respective substrates, indicating that these unusual enzymes, which catalyze the cleavage of two carbon-carbon bonds concomitant with CO formation, indeed are 2,4-dioxygenases. Both enzymes are small monomeric proteins of 32 kDa (MeQDO) and 30 kDa (QDO). The apparent K(m) values of MeQDO for 1H-3-hydroxy-4-oxoquinaldine and QDO for 1H-3-hydroxy-4-oxoquinoline were 30 microM and 24 microM, respectively. In both 2,4-dioxygenases, there was no spectral evidence for the presence of a chromophoric cofactor. EPR analyses of MeQDO did not reveal any signal that could be assigned to an organic radical species or to a metal, and X-ray fluorescence spectrometry of both enzymes did not show any metal present in stoichiometric amounts. Ethylxanthate, metal-chelating agents (tiron, alpha, alpha'-bipyridyl, 8-hydroxyquinoline, o-phenanthroline, EDTA, diphenylthiocarbazone, diethyldithiocarbamate), reagents that modify sulfhydryl groups (iodoacetamide, N-ethylmaleimide, p-hydroxymercuribenzoate), and reducing agents (sodium dithionite, dithiothreitol, mercaptoethanol) either did not affect 2,4-dioxygenolytic activities at all or inhibited at high concentrations only. With respect to the supposed lack of any cofactor and with respect to the inhibitors of dioxygenolytic activities, MeQDO and QDO resemble aci-reductone oxidase (CO-forming) from Klebsiella pneumoniae, which catalyzes 1,3-dioxygenolytic cleavage of 1,2-dihydroxy-3-keto-S-methylthiopentene anion (Wray, J. W. & Abeles, R. H. (1993) J. Biol. Chem. 268, 21466-21469; Wray, J. W. & Abeles, R. H. (1995) J. Biol. Chem. 270, 3147-3153). 1H-3-Hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinoline were reactive towards molecular oxygen in the presence of the base catalyst potassium-tert.-butoxide in the aprotic solvent N,N-dimethylformamide. Base-catalyzed oxidation, yielding the same products as the enzyme-catalyzed conversions, provides a non-enzymic model reaction for 2,4-dioxygenolytic release of CO from 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinoline.
        
Other Papers
No structure scheme yet for this family
Structures in HOD-cofactorfree-dioxygenase family (15)
Crystal structure of the cofactor-devoid 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus RU61A anaerobically complexed with its natural substrate 1-H-3-hydroxy-4-oxoquinaldine
Crystal structure of the cofactor-devoid 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus RU61A anaerobically complexed with its natural substrate N-acetylanthranilate
Crystal structure of the cofactor-devoid 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus RU61A anaerobically complexed with its chloride
Crystal structure of the cofactor-devoid 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) catalytically inactive H251A variant complexed with its natural substrate 1-H-3-hydroxy-4-oxoquinaldine
Crystal structure of the cofactor-devoid 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) catalytically inactive H251A variant complexed with 2-methyl-quinolin-4(1H)-one under normoxic conditions
Crystal structure of the cofactor-devoid 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) catalytically inactive H251A variant complexed with 2-methyl-quinolin-4(1H)-one under hyperoxic conditions
Crystal structure of the cofactor-devoid 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) catalytically inactive S101A variant complexed with 2-methyl-quinolin-4(1H)-one (40 bar O2)