This family correspond to family I.1, I.2, I.3, I.5, I.6, (families I.4 and 1.7 are more related to Lipase_2) of the classification of Arpigny and Jaeger (1999).(also included in IPR000734) Also close to Lipase_2 (2lip). Pseudomonas cepacia lipase is in the same family of scop as 1I6W bacillus subtilis lipase).
5 moreTitle: Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding Chen CK, Lee GC, Ko TP, Guo RT, Huang LM, Liu HJ, Ho YF, Shaw JF, Wang AH Ref: Journal of Molecular Biology, 390:672, 2009 : PubMed
Several crystal structures of AFL, a novel lipase from the archaeon Archaeoglobus fulgidus, complexed with various ligands, have been determined at about 1.8 A resolution. This enzyme has optimal activity in the temperature range of 70-90 degrees C and pH 10-11. AFL consists of an N-terminal alpha/beta-hydrolase fold domain, a small lid domain, and a C-terminal beta-barrel domain. The N-terminal catalytic domain consists of a 6-stranded beta-sheet flanked by seven alpha-helices, four on one side and three on the other side. The C-terminal lipid binding domain consists of a beta-sheet of 14 strands and a substrate covering motif on top of the highly hydrophobic substrate binding site. The catalytic triad residues (Ser136, Asp163, and His210) and the residues forming the oxyanion hole (Leu31 and Met137) are in positions similar to those of other lipases. Long-chain lipid is located across the two domains in the AFL-substrate complex. Structural comparison of the catalytic domain of AFL with a homologous lipase from Bacillus subtilis reveals an opposite substrate binding orientation in the two enzymes. AFL has a higher preference toward long-chain substrates whose binding site is provided by a hydrophobic tunnel in the C-terminal domain. The unusually large interacting surface area between the two domains may contribute to thermostability of the enzyme. Two amino acids, Asp61 and Lys101, are identified as hinge residues regulating movement of the lid domain. The hydrogen-bonding pattern associated with these two residues is pH dependent, which may account for the optimal enzyme activity at high pH. Further engineering of this novel lipase with high temperature and alkaline stability will find its use in industrial applications.
A family I.3 lipase from Pseudomonas sp. MIS38 (PML) contains three Ca(2+)-binding sites (Ca1-Ca3) in the N-catalytic domain. Of them, the Ca1 site is formed only in an open conformation. To analyze the role of these Ca(2+)-binding sites, three mutant proteins D157A-PML, D275A-PML and D337A-PML, which are designed to remove the Ca1, Ca2 and Ca3 sites, respectively, were constructed. Of them, the crystal structures of D157A-PML and D337A-PML in a closed conformation were determined. Both structures are nearly identical to that of the wild-type protein, except that the Ca3 site is missing in the D337A-PML structure. D157A-PML was as stable as the wild-type protein. Nevertheless, it exhibited little lipase and very weak esterase activities. D275A-PML was less stable than the wild-type protein by approximately 5 degrees C in T(1/2). It exhibited weak but significant lipase and esterase activities when compared with the wild-type protein. D337A-PML was also less stable than the wild-type protein by approximately 5 degrees C in T(1/2) but was fully active. These results suggest that the Ca1 site is required to make the active site fully open by anchoring lid 1. The Ca2 and Ca3 sites contribute to the stabilization of PML. The Ca2 site is also required to make PML fully active.
The crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation was determined at 1.5A resolution. This structure highly resembles that of Serratia marcescens LipA in an open conformation, except for the structures of two lids. Lid1 is anchored by a Ca2+ ion (Ca1) in an open conformation, but lacks this Ca1 site and greatly changes its structure and position in a closed conformation. Lid2 forms a helical hairpin in an open conformation, but does not form it and covers the active site in a closed conformation. Based on these results, we discuss on the lid-opening mechanism.
Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.
        
Title: Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding Chen CK, Lee GC, Ko TP, Guo RT, Huang LM, Liu HJ, Ho YF, Shaw JF, Wang AH Ref: Journal of Molecular Biology, 390:672, 2009 : PubMed
Several crystal structures of AFL, a novel lipase from the archaeon Archaeoglobus fulgidus, complexed with various ligands, have been determined at about 1.8 A resolution. This enzyme has optimal activity in the temperature range of 70-90 degrees C and pH 10-11. AFL consists of an N-terminal alpha/beta-hydrolase fold domain, a small lid domain, and a C-terminal beta-barrel domain. The N-terminal catalytic domain consists of a 6-stranded beta-sheet flanked by seven alpha-helices, four on one side and three on the other side. The C-terminal lipid binding domain consists of a beta-sheet of 14 strands and a substrate covering motif on top of the highly hydrophobic substrate binding site. The catalytic triad residues (Ser136, Asp163, and His210) and the residues forming the oxyanion hole (Leu31 and Met137) are in positions similar to those of other lipases. Long-chain lipid is located across the two domains in the AFL-substrate complex. Structural comparison of the catalytic domain of AFL with a homologous lipase from Bacillus subtilis reveals an opposite substrate binding orientation in the two enzymes. AFL has a higher preference toward long-chain substrates whose binding site is provided by a hydrophobic tunnel in the C-terminal domain. The unusually large interacting surface area between the two domains may contribute to thermostability of the enzyme. Two amino acids, Asp61 and Lys101, are identified as hinge residues regulating movement of the lid domain. The hydrogen-bonding pattern associated with these two residues is pH dependent, which may account for the optimal enzyme activity at high pH. Further engineering of this novel lipase with high temperature and alkaline stability will find its use in industrial applications.
        
Title: Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling Hoover HS, Blankman JL, Niessen S, Cravatt BF Ref: Bioorganic & Medicinal Chemistry Lett, 18:5838, 2008 : PubMed
The endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated as a key retrograde mediator in the nervous system based on pharmacological studies using inhibitors of the 2-AG biosynthetic enzymes diacyglycerol lipase alpha and beta (DAGL-alpha/beta). Here, we show by competitive activity-based protein profiling that the DAGL-alpha/beta inhibitors, tetrahydrolipstatin (THL) and RHC80267, block several brain serine hydrolases with potencies equal to or greater than their inhibitory activity against DAGL enzymes. Interestingly, a minimal overlap in target profiles was observed for THL and RHC80267, suggesting that pharmacological effects observed with both agents may be viewed as good initial evidence for DAGL-dependent events.
A family I.3 lipase from Pseudomonas sp. MIS38 (PML) contains three Ca(2+)-binding sites (Ca1-Ca3) in the N-catalytic domain. Of them, the Ca1 site is formed only in an open conformation. To analyze the role of these Ca(2+)-binding sites, three mutant proteins D157A-PML, D275A-PML and D337A-PML, which are designed to remove the Ca1, Ca2 and Ca3 sites, respectively, were constructed. Of them, the crystal structures of D157A-PML and D337A-PML in a closed conformation were determined. Both structures are nearly identical to that of the wild-type protein, except that the Ca3 site is missing in the D337A-PML structure. D157A-PML was as stable as the wild-type protein. Nevertheless, it exhibited little lipase and very weak esterase activities. D275A-PML was less stable than the wild-type protein by approximately 5 degrees C in T(1/2). It exhibited weak but significant lipase and esterase activities when compared with the wild-type protein. D337A-PML was also less stable than the wild-type protein by approximately 5 degrees C in T(1/2) but was fully active. These results suggest that the Ca1 site is required to make the active site fully open by anchoring lid 1. The Ca2 and Ca3 sites contribute to the stabilization of PML. The Ca2 site is also required to make PML fully active.
The crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation was determined at 1.5A resolution. This structure highly resembles that of Serratia marcescens LipA in an open conformation, except for the structures of two lids. Lid1 is anchored by a Ca2+ ion (Ca1) in an open conformation, but lacks this Ca1 site and greatly changes its structure and position in a closed conformation. Lid2 forms a helical hairpin in an open conformation, but does not form it and covers the active site in a closed conformation. Based on these results, we discuss on the lid-opening mechanism.
        
Title: Lipases for biotechnology Jaeger KE, Eggert T Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed
Lipases constitute the most important group of biocatalysts for biotechnological applications. The high-level production of microbial lipases requires not only the efficient overexpression of the corresponding genes but also a detailed understanding of the molecular mechanisms governing their folding and secretion. The optimisation of industrially relevant lipase properties can be achieved by directed evolution. Furthermore, novel biotechnological applications have been successfully established using lipases for the synthesis of biopolymers and biodiesel, the production of enantiopure pharmaceuticals, agrochemicals, and flavour compounds.
In a series of four racemic phenoxyalkyl-alkyl carbinols, 1-phenoxy-2-hydroxybutane (1) is enantioselectively acetylated by Burkholderia cepacia (formerly Pseudomonas cepacia) lipase with an E value > or = 200, whereas for the other three racemates E was found to be < or = 4. To explain the high preference of B. cepacia lipase for (R)-(+)-1, a precursor of its transition state analogue with a tetrahedral P-atom, (R(P),S(P))-O-(2R)-(1-phenoxybut-2-yl)methylphosphonic acid chloride was prepared and crystallized in complex with B. cepacia lipase. The X-ray structure of the complex was determined, allowing to compare the conformation of the inhibitor with results of molecular modelling.
        
Title: Bacterial lipolytic enzymes: classification and properties Arpigny JL, Jaeger KE Ref: Biochemical Journal, 343:177, 1999 : PubMed
Knowledge of bacterial lipolytic enzymes is increasing at a rapid and exciting rate. To obtain an overview of this industrially very important class of enzymes and their characteristics, we have collected and classified the information available from protein and nucleotide databases. Here we propose an updated and extensive classification of bacterial esterases and lipases based mainly on a comparison of their amino acid sequences and some fundamental biological properties. These new insights result in the identification of eight different families with the largest being further divided into six subfamilies. Moreover, the classification enables us to predict (1) important structural features such as residues forming the catalytic site or the presence of disulphide bonds, (2) types of secretion mechanism and requirement for lipase-specific foldases, and (3) the potential relationship to other enzyme families. This work will therefore contribute to a faster identification and to an easier characterization of novel bacterial lipolytic enzymes.