Bacterial AHL-acylases (acyl homoserine lactonase) (AiiO, AidH) from genus Ochrobactrum and related bacteria are different from previously described AHL-acylases such as PvdQ, QuiP (P.aeriginosa) HacA HacB (P.syringea which belong to Ntn-hydrolase superfamily Czajkowski et al.) and different from AHL-lactonase of B. thuringensis and A. tumefasciens (which are metallo-beta lactamases). AHL-acylase inactivates N-acyl homoserine lactone (AHL) quorum sensing signal molecules (lactonases are also inactivating enzymes). AHL-acylases could be useful for the control of development of infections caused by pathogenic bacteria and their persistence in respective hosts. The three fungi sequences are genes without real introns (horizontal transfer?). There are other N-acyl homoserine lactonase (AiiA) not alpha/beta hydroalses but Metallo-B-lactamases
Many pathogenic bacteria that infect humans, animals and plants rely on a quorum-sensing (QS) system to produce virulence factors. N-Acyl homoserine lactones (AHLs) are the best-characterized cell-cell communication signals in QS. The concentration of AHL plays a key role in regulating the virulence-gene expression and essential biological functions of pathogenic bacteria. N-Acyl homoserine lactonases (AHL-lactonases) have important functions in decreasing pathogenicity by degrading AHLs. Here, structures of the AHL-lactonase from Ochrobactrum sp. (AidH) in complex with N-hexanoyl homoserine lactone, N-hexanoyl homoserine and N-butanoyl homoserine are reported. The high-resolution structures together with biochemical analyses reveal convincing details of AHL degradation. No metal ion is bound in the active site, which is different from other AHL-lactonases, which have a dual Lewis acid catalysis mechanism. AidH contains a substrate-binding tunnel between the core domain and the cap domain. The conformation of the tunnel entrance varies with the AHL acyl-chain length, which contributes to the binding promiscuity of AHL molecules in the active site. It also supports the biochemical result that AidH is a broad catalytic spectrum AHL-lactonase. Taken together, the present results reveal the catalytic mechanism of the metal-independent AHL-lactonase, which is a typical acid-base covalent catalysis.
The soil isolate Ochrobactrum sp. A44 inactivates N-acyl homoserine lactone (AHL) quorum sensing signal molecules and is capable of quenching the AHL-dependent virulence of Pectobacterium carotovorum in planta. To characterize this AHL inactivating activity, Ochrobactrum cell extracts were prepared and their capacity to degrade a broad range of AHLs was determined. AHLs with acyl chains ranging from C4 to C14 with or without 3-oxo or 3-hydroxy substituents were all inactivated to varying extents; long chain AHLs were generally more susceptible than short chain compounds irrespective of the three position substituent. HPLC and LC-tandem mass spectrometry of the AHL degradation products revealed that the AHL inactivating activity present in the Ochrobactrum cell extract cleaved the AHL amide bond. To identify the gene(s) responsible for AHL degradation, Ochrobactrum sp. A44 was subjected to random transposon (Tn) mutagenesis and the resulting mutants screened for the loss of AHL acylase activity. The Tn insertion in mutant A6731 was mapped to a gene termed aiiO, the translated product of which belongs to the alpha/beta hydrolase superfamily which constitutes a novel type of AHL acylase.
        
Title: Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Czajkowski R, Jafra S Ref: Acta Biochim Pol, 56:1, 2009 : PubMed
Many Gram-positive and Gram-negative bacteria communicate using small diffusible signal molecules called autoinducers. This process, known as quorum sensing (QS), links cell density to the expression of genes as diverse as those associated with virulence factors production of plant and animal pathogens, bioluminescence, antibiotic production, sporulation or biofilm formation. In Gram-negative bacteria, this communication is mainly mediated by N-acyl-homoserine lactones (AHLs). It has been proven that inactivation of the signal molecules attenuates many of the processes controlled by QS. Enzymatic degradation of the signal molecules has been amply described. Two main classes of AHL-inactivating enzymes were identified: AHL lactonases which hydrolyse the lactone ring in AHLs, and AHL acylases (syn. AHL amidases) which liberate a free homoserine lactone and a fatty acid. Recently, AHL oxidoreductase, a novel type of AHL inactivating enzyme, was described. The activity of these enzymes results in silencing the QS-regulated processes, as degradation products cannot act as signal molecules. The ability to inactivate AHL (quorum quenching, QQ) might be useful in controlling virulence of many pathogenic bacteria.
Many pathogenic bacteria that infect humans, animals and plants rely on a quorum-sensing (QS) system to produce virulence factors. N-Acyl homoserine lactones (AHLs) are the best-characterized cell-cell communication signals in QS. The concentration of AHL plays a key role in regulating the virulence-gene expression and essential biological functions of pathogenic bacteria. N-Acyl homoserine lactonases (AHL-lactonases) have important functions in decreasing pathogenicity by degrading AHLs. Here, structures of the AHL-lactonase from Ochrobactrum sp. (AidH) in complex with N-hexanoyl homoserine lactone, N-hexanoyl homoserine and N-butanoyl homoserine are reported. The high-resolution structures together with biochemical analyses reveal convincing details of AHL degradation. No metal ion is bound in the active site, which is different from other AHL-lactonases, which have a dual Lewis acid catalysis mechanism. AidH contains a substrate-binding tunnel between the core domain and the cap domain. The conformation of the tunnel entrance varies with the AHL acyl-chain length, which contributes to the binding promiscuity of AHL molecules in the active site. It also supports the biochemical result that AidH is a broad catalytic spectrum AHL-lactonase. Taken together, the present results reveal the catalytic mechanism of the metal-independent AHL-lactonase, which is a typical acid-base covalent catalysis.
The soil isolate Ochrobactrum sp. A44 inactivates N-acyl homoserine lactone (AHL) quorum sensing signal molecules and is capable of quenching the AHL-dependent virulence of Pectobacterium carotovorum in planta. To characterize this AHL inactivating activity, Ochrobactrum cell extracts were prepared and their capacity to degrade a broad range of AHLs was determined. AHLs with acyl chains ranging from C4 to C14 with or without 3-oxo or 3-hydroxy substituents were all inactivated to varying extents; long chain AHLs were generally more susceptible than short chain compounds irrespective of the three position substituent. HPLC and LC-tandem mass spectrometry of the AHL degradation products revealed that the AHL inactivating activity present in the Ochrobactrum cell extract cleaved the AHL amide bond. To identify the gene(s) responsible for AHL degradation, Ochrobactrum sp. A44 was subjected to random transposon (Tn) mutagenesis and the resulting mutants screened for the loss of AHL acylase activity. The Tn insertion in mutant A6731 was mapped to a gene termed aiiO, the translated product of which belongs to the alpha/beta hydrolase superfamily which constitutes a novel type of AHL acylase.
        
Title: AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ Ref: Applied Environmental Microbiology, 76:4933, 2010 : PubMed
N-acylhomoserine lactones (AHLs) are signaling molecules in many quorum-sensing (QS) systems that regulate interactions between various pathogenic bacteria and their hosts. Quorum quenching by the enzymatic inactivation of AHLs holds great promise in preventing and treating infections, and several such enzymes have been reported. In this study, we report the characterization of a novel AHL-degrading protein from the soil bacterium Ochrobactrum sp. strain T63. This protein, termed AidH, shares no similarity with any of the known AHL degradases but is highly homologous with a hydrolytic enzyme from Ochrobactrum anthropi ATCC 49188 that contains the alpha/beta-hydrolase fold. By liquid chromatography-mass spectrometry (MS) analysis, we demonstrate that AidH functions as an AHL-lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Mutational analyses indicate that the G-X-Nuc-X-G motif or the histidine residue conserved among alpha/beta-hydrolases is critical for the activity of AidH. Furthermore, the AHL-inactivating activity of AidH requires Mn(2+) but not several other tested divalent cations. We also showed that AidH significantly reduces biofilm formation by Pseudomonas fluorescens 2P24 and the pathogenicity of Pectobacterium carotovorum, indicating that this enzyme is able to effectively quench QS-dependent functions in these bacteria by degrading AHLs.
        
Title: Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Czajkowski R, Jafra S Ref: Acta Biochim Pol, 56:1, 2009 : PubMed
Many Gram-positive and Gram-negative bacteria communicate using small diffusible signal molecules called autoinducers. This process, known as quorum sensing (QS), links cell density to the expression of genes as diverse as those associated with virulence factors production of plant and animal pathogens, bioluminescence, antibiotic production, sporulation or biofilm formation. In Gram-negative bacteria, this communication is mainly mediated by N-acyl-homoserine lactones (AHLs). It has been proven that inactivation of the signal molecules attenuates many of the processes controlled by QS. Enzymatic degradation of the signal molecules has been amply described. Two main classes of AHL-inactivating enzymes were identified: AHL lactonases which hydrolyse the lactone ring in AHLs, and AHL acylases (syn. AHL amidases) which liberate a free homoserine lactone and a fatty acid. Recently, AHL oxidoreductase, a novel type of AHL inactivating enzyme, was described. The activity of these enzymes results in silencing the QS-regulated processes, as degradation products cannot act as signal molecules. The ability to inactivate AHL (quorum quenching, QQ) might be useful in controlling virulence of many pathogenic bacteria.