Monoacylglycerol lipase ABHD6 hydrolyses the endocannabinoid 2-arachidonoylglycerol (2-AG). 2-AG regulates neurotransmission and neuroinflammation by activating CB1 cannabinoid receptors on neurons and CB2 cannabinoid receptors on microglia. (A MGLL human-MGLL or MAGLL is the other enzyme hydrolyzing 26AG (belongs to Monoglyceridelipase_lysophospholip family). . Alpha/beta-Hydrolase domain 6 deletion induces adipose browning and prevents obesity and type 2 diabetes and is published by Zhao et al.. A study by Wei et al. shows that ABHD6 negatively regulates the surface delivery and synaptic function of AMPA receptors independantly of hydrolase activity. ABHD6 hydrolyzes Bis(monoacylglycerol)phosphate (BMP): a phospholipid crucial for lipid degradation and sorting in acidic organelles and accumulating in Lysosomal storage disorders Pribasnig et al. ABHD6 of animals is homologous to some bacterial enzymes. For bacterial enzymes, this family correspond to family V.1 of the classification of Arpigny and Jaeger 1999 Membrane phospholipid remodeling by a bacterial Lands cycle phospholipase A is published by Bleffert et al. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. (6I8W). Main substrates include: diacylglycerols, 1(3)-monoacylglycerols with saturated medium or long acyl chains, 2-arachidonoylglycerol, lysophosphatidylinositols, bis(monoacylglycero)phosphate
24 moreTitle: The serine hydrolase ABHD6 controls survival and thermally induced seizures in a mouse model of Dravet syndrome Westenbroek R, Kaplan J, Viray K, Stella N Ref: Neurobiol Dis, 180:106099, 2023 : PubMed
Evidence suggests that inhibition of alpha/beta hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6(+/-)) significantly reduced the premature lethality of Scn1a(+/-) mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6(+/-) mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a(+/-) pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABA(A)R). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABA(A)R currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABA(A)R currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.
Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A 1 (PlaF) from Pseudomonas aeruginosa involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa delta plaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-A-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. A dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network which likely explains the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the GPL remodeling pathway for virulence and pave the way for the development of a novel therapeutic class of antibiotics targeting PlaF-mediated membrane GPL remodeling. Synopsis Membrane homeostasis can be regulated by phospholipase-controlled deacylation of endogenous glycerophospholipids (GPLs) followed by reacylation of products, known as the Lands cycle in eukaryotes. Here we show that the human pathogen Pseudomonas aeruginosa uses intracellular phospholipase A 1 (PlaF) to modulate membrane GPL composition, which is the first example in bacteria. This newly identified PLA 1 indirectly regulates the bacterial virulence properties by hydrolyzing a specific set of membrane GPLs. The crystal structure of full-length PlaF dimers bound to natural ligands, MD simulations, and biochemical approaches provide insights into the molecular mechanism of dimerization-mediated inactivation of this single-pass transmembrane PLA 1 . Our findings shed light on a mechanism by which bacterial intracellular PLAs might regulate membrane homeostasis what showcases these enzymes as a promising target for a new class of antibiotics.
        
Title: Alpha/Beta-Hydrolase Domain-Containing 6: Signaling and Function in the Central Nervous System Zhang H, Li X, Liao D, Luo P, Jiang X Ref: Front Pharmacol, 12:784202, 2021 : PubMed
Endocannabinoid (eCB) signaling plays an important role in the central nervous system (CNS). alpha/beta-Hydrolase domain-containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids such as endocannabinoid 2-arachidonoyl glycerol (2-AG). ABHD6 participates in neurotransmission, inflammation, brain energy metabolism, tumorigenesis and other biological processes and is a potential therapeutic target for various neurological diseases, such as traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, mental illness, and pain. This review summarizes the molecular mechanisms of action and biological functions of ABHD6, particularly its mechanism of action in the pathogenesis of neurological diseases, and provides a theoretical basis for new pharmacological interventions via targeting of ABHD6.
        
24 lessTitle: The serine hydrolase ABHD6 controls survival and thermally induced seizures in a mouse model of Dravet syndrome Westenbroek R, Kaplan J, Viray K, Stella N Ref: Neurobiol Dis, 180:106099, 2023 : PubMed
Evidence suggests that inhibition of alpha/beta hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6(+/-)) significantly reduced the premature lethality of Scn1a(+/-) mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6(+/-) mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a(+/-) pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABA(A)R). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABA(A)R currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABA(A)R currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.
Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A 1 (PlaF) from Pseudomonas aeruginosa involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa delta plaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-A-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. A dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network which likely explains the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the GPL remodeling pathway for virulence and pave the way for the development of a novel therapeutic class of antibiotics targeting PlaF-mediated membrane GPL remodeling. Synopsis Membrane homeostasis can be regulated by phospholipase-controlled deacylation of endogenous glycerophospholipids (GPLs) followed by reacylation of products, known as the Lands cycle in eukaryotes. Here we show that the human pathogen Pseudomonas aeruginosa uses intracellular phospholipase A 1 (PlaF) to modulate membrane GPL composition, which is the first example in bacteria. This newly identified PLA 1 indirectly regulates the bacterial virulence properties by hydrolyzing a specific set of membrane GPLs. The crystal structure of full-length PlaF dimers bound to natural ligands, MD simulations, and biochemical approaches provide insights into the molecular mechanism of dimerization-mediated inactivation of this single-pass transmembrane PLA 1 . Our findings shed light on a mechanism by which bacterial intracellular PLAs might regulate membrane homeostasis what showcases these enzymes as a promising target for a new class of antibiotics.
BACKGROUND AND PURPOSE: The enzyme alpha/beta-hydrolase domain containing 6 (ABHD6), a new member of the endocannabinoid system, is a promising therapeutic target against neuronal-related diseases. However, how ABHD6 activity is regulated is not known. ABHD6 coexists in protein complexes with the brain-specific carnitine palmitoyltransferase 1C (CPT1C). CPT1C is involved in neuro-metabolic functions, depending on brain malonyl-CoA levels. Our aim was to study CPT1C-ABHD6 interaction and determine whether CPT1C is a key regulator of ABHD6 activity depending on nutritional status. EXPERIMENTAL APPROACH: Co-immunoprecipitation and FRET assays were used to explore ABHD6 interaction with CPT1C or modified malonyl-CoA-insensitive or C-terminal truncated CPT1C forms. Cannabinoid CB(1) receptor-mediated signalling was investigated by determining cAMP levels. A novel highly sensitive fluorescent method was optimized to measure ABHD6 activity in non-neuronal and neuronal cells and in brain tissues from wild-type (WT) and CPT1C-KO mice. KEY RESULTS: CPT1C interacted with ABHD6 and negatively regulated its hydrolase activity, thereby regulating 2-AG downstream signalling. Accordingly, brain tissues of CPT1C-KO mice showed increased ABHD6 activity. CPT1C malonyl-CoA sensing was key to the regulatory role on ABHD6 activity and CB(1) receptor signalling. Fasting, which attenuates brain malonyl-CoA, significantly increased ABHD6 activity in hypothalamus from WT, but not CPT1C-KO, mice. CONCLUSIONS AND IMPLICATIONS: Our finding that negative regulation of ABHD6 activity, particularly in the hypothalamus, is sensitive to nutritional status throws new light on the characterization and the importance of the proteins involved as potential targets against diseases affecting the CNS.
        
Title: Alpha/Beta-Hydrolase Domain-Containing 6: Signaling and Function in the Central Nervous System Zhang H, Li X, Liao D, Luo P, Jiang X Ref: Front Pharmacol, 12:784202, 2021 : PubMed
Endocannabinoid (eCB) signaling plays an important role in the central nervous system (CNS). alpha/beta-Hydrolase domain-containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids such as endocannabinoid 2-arachidonoyl glycerol (2-AG). ABHD6 participates in neurotransmission, inflammation, brain energy metabolism, tumorigenesis and other biological processes and is a potential therapeutic target for various neurological diseases, such as traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, mental illness, and pain. This review summarizes the molecular mechanisms of action and biological functions of ABHD6, particularly its mechanism of action in the pathogenesis of neurological diseases, and provides a theoretical basis for new pharmacological interventions via targeting of ABHD6.
        
Title: Therapeutic potential of targeting alpha/beta-Hydrolase domain-containing 6 (ABHD6) Deng H, Li W Ref: Eur Journal of Medicinal Chemistry, 198:112353, 2020 : PubMed
alpha/beta-Hydrolase domain 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids, particularly the endogenous cannabinoid 2-arachidonoylglycerol (2-AG), in both central and peripheral tissues. ABHD6 and its substrates have been shown to be involved in the modulation of various (patho)physiological processes, including neurotransmission, inflammation, insulin secretion, adipose browning, food intake, autoimmune disorders, as well as neurological and metabolic diseases, making this enzyme a promising therapeutic target to treat several diseases. This review will focus on the molecular mechanism, biological functions and pathological roles of ABHD6, as well as recent efforts to develop ABHD6 inhibitors, providing a strong basis for the development of small molecules by targeting ABHD6 to treat diverse diseases.
Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose alpha/beta-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARalpha in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo beta3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARalpha/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis.
        
Title: The alpha/beta-hydrolase domain 6 inhibitor WWL70 decreases endotoxin-induced lung inflammation in mice, potential contribution of 2-arachidonoylglycerol, and lysoglycerophospholipids Bottemanne P, Paquot A, Ameraoui H, Alhouayek M, Muccioli GG Ref: FASEB Journal, :fj201802259R, 2019 : PubMed
Lung inflammation plays a crucial role in the pathogenesis of many respiratory diseases that are in need of new therapeutic strategies. Previously, we showed that inhibition of alpha/beta-hydrolase domain 6 (ABHD6) decreased macrophage activation and exerted anti-inflammatory effects. Therefore, we thought to assess the effects of ABHD6 inhibition in a mouse model of acute lung injury (ALI) induced by intratracheal administration of lipopolysaccharides. ABHD6 inhibition with N-methyl- N-{[3-(4-pyridinyl)phenyl]methyl}-carbamic acid 4'-(aminocarbonyl)(1,1'-biphenyl)-4-yl ester (WWL70) decreases most of the hallmarks of ALI, including neutrophil infiltration, cytokine secretion, and protein extravasation. mRNA expression of proinflammatory markers in the cells recovered in the bronchoalveolar lavage was also decreased. Interestingly, ABHD6 inhibition was more efficient than monoacylglycerol lipase inhibition by 4-nitrophenyl-4-[dibenzo(d)(14)dioxol-5-yl(hydroxy)methyl]piperidine-1-carboxylat e. We also studied ABHD6 inhibition on primary alveolar macrophages and neutrophils to explore their potential implication in the effects of ABHD6 inhibition in vivo. Moreover, we quantified by high-performance liquid chromatography-mass spectrometry the levels of reported substrates of ABHD6 [ i.e., 2-arachidonoylglycerol (2-AG) and lysophospholipids]. The potential implication of these lipid mediators in the effects of WWL70 was further investigated on primary alveolar macrophages. Taken together, these data support ABHD6 inhibition as an interesting anti-inflammatory strategy in acute lung inflammation and assess the possible contribution of 2-AG and lysophospholipids in the observed effects.-Bottemanne, P., Paquot, A., Ameraoui, H., Alhouayek, M., Muccioli, G. G. The alpha/beta-hydrolase domain 6 inhibitor WWL70 decreases endotoxin-induced lung inflammation in mice, potential contribution of 2-arachidonoylglycerol, and lysoglycerophospholipids.
        
Title: ABHD6: Its Place in Endocannabinoid Signaling and Beyond Cao JK, Kaplan J, Stella N Ref: Trends in Pharmacological Sciences, 40:267, 2019 : PubMed
The endocannabinoid (eCB) signaling system modulates neurotransmission and inflammation, among other physiological functions. Its newest member, alpha/beta-hydrolase domain-containing 6 (ABHD6), has emerged as a promising therapeutic target to treat several devastating diseases, including epilepsy. Here, we review the molecular mechanisms that mediate and control eCB signaling and, within it, the specific role of ABHD6. We also discuss how ABHD6 controls the abundance of additional lipids and the trafficking of ionotropic receptors to plasma membranes. We finish with several unexplored questions regarding this novel enzyme. Our current understanding of the molecular mechanism and biological function of ABHD6 provides a strong foundation for the development of small-molecule therapeutics to treat devastating diseases.
Bis(monoacylglycerol)phosphate (BMP) is a phospholipid that is crucial for lipid degradation and sorting in acidic organelles. Genetic and drug-induced lysosomal storage disorders (LSDs) are associated with increased BMP concentrations in tissues and in the circulation. Data on BMP in disorders other than LSDs, however, are scarce, and key enzymes regulating BMP metabolism remain elusive. Here, we demonstrate that common metabolic disorders and the intracellular BMP hydrolase alpha/beta-hydrolase domain-containing 6 (ABHD6) affect BMP metabolism in mice and humans. In mice, dietary lipid overload strongly affects BMP concentration and FA composition in the liver and plasma, similar to what has been observed in LSDs. Notably, distinct changes in the BMP FA profile enable a clear distinction between lipid overload and drug-induced LSDs. Global deletion of ABHD6 increases circulating BMP concentrations but does not cause LSDs. In humans, nonalcoholic fatty liver disease and liver cirrhosis affect the serum BMP FA composition and concentration. Furthermore, we identified a patient with a loss-of-function mutation in the ABHD6 gene, leading to an altered circulating BMP profile. In conclusion, our results suggest that common metabolic diseases and ABHD6 affect BMP metabolism in mice and humans.
        
Title: Structural properties and role of the endocannabinoid lipases ABHD6 and ABHD12 in lipid signalling and disease Kind L, Kursula P Ref: Amino Acids, 51:151, 2018 : PubMed
The endocannabinoid (eCB) system is an important part of both the human central nervous system (CNS) and peripheral tissues. It is involved in the regulation of various physiological and neuronal processes and has been associated with various diseases. The eCB system is a complex network composed of receptor molecules, their cannabinoid ligands, and enzymes regulating the synthesis, release, uptake, and degradation of the signalling molecules. Although the eCB system and the molecular processes of eCB signalling have been studied extensively over the past decades, the involved molecules and underlying signalling mechanisms have not been described in full detail. An example pose the two poorly characterised eCB-degrading enzymes alpha/beta-hydrolase domain protein six (ABHD6) and ABHD12, which have been shown to hydrolyse 2-arachidonoyl glycerol-the main eCB in the CNS. We review the current knowledge about the eCB system and the role of ABHD6 and ABHD12 within this important signalling system and associated diseases. Homology modelling and multiple sequence alignments highlight the structural features of the studied enzymes and their similarities, as well as the structural basis of disease-related ABHD12 mutations. However, homologies within the ABHD family are very low, and even the closest homologues have widely varying substrate preferences. Detailed experimental analyses at the molecular level will be necessary to understand these important enzymes in full detail.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, characterized by loss of tolerance toward self nuclear Ags. Systemic induction of type I IFNs plays a pivotal role in SLE, a major source of type I IFNs being the plasmacytoid dendritic cells (pDCs). Several genes have been linked with susceptibility to SLE in genome-wide association studies. We aimed at exploring the role of one such gene, alpha/beta-hydrolase domain-containing 6 (ABHD6), in regulation of IFN-alpha induction in SLE patients. We discovered a regulatory role of ABHD6 in human pDCs through modulating the local abundance of its substrate, the endocannabinoid 2-arachidonyl glycerol (2-AG), and elucidated a hitherto unknown cannabinoid receptor 2 (CB2)-mediated regulatory role of 2-AG on IFN-alpha induction by pDCs. We also identified an ABHD6(High) SLE endophenotype wherein reduced local abundance of 2-AG relieves the CB2-mediated steady-state resistive tuning on IFN-alpha induction by pDCs, thereby contributing to SLE pathogenesis.
        
Title: Biochemical and Proteomic Characterization of Recombinant Human alpha/beta Hydrolase Domain 6 Shields CM, Zvonok N, Zvonok A, Makriyannis A Ref: Sci Rep, 9:890, 2019 : PubMed
Human alpha/beta hydrolase domain 6 (hABHD6) is an enzyme that hydrolyzes 2-arachidonoylglycerol (2-AG), a potent agonist at both cannabinoid CB1 and CB2 receptors. In vivo modulation of ABHD6 expression has been shown to have potential therapeutic applications, making the enzyme a promising drug target. However, the lack of structural information on hABHD6 limits the discovery and design of selective inhibitors. We have performed E. coli expression, purification and activity profiling screening of different hABHD6 constructs and identified a truncated variant without N-terminal transmembrane (TM) domain, hDelta29-3-ABHD6, as the most promising protein for further characterization. The elimination of the TM domain did not affect 2-AG or fluorogenic arachidonoyl, 7-hydroxy-6-methoxy-4-methylcoumarin ester (AHMMCE) substrates hydrolysis, suggesting that the TM is not essential for enzyme catalytic activity. The hDelta29-3-ABHD6 variant was purified in a single step using Immobilized Metal Affinity Chromatography (IMAC), in-solution trypsin digested, and proteomically characterized by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). The N-terminal peptide without methionine was identified indicating on a post-translational modification of the recombinant protein. The mechanism of inhibition of hABHD6 with AM6701 and WWL70 covalent probes was elucidated based on MS analysis of trypsin digested hABHD6 following the Ligand Assisted Protein Structure (LAPS) approach. We identified the carbamylated peptides containing catalytic serine (Ser(148)) suggesting a selective carbamylation of the enzyme by AM6701 or WWL70 and confirming an essential role of this residue in catalysis. The ability to produce substantial quantities of functional, pure hABHD6 will aid in the downstream structural characterization, and development of potent, selective inhibitors.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is involved in neuronal differentiation. This study aimed to identify the biosynthetic enzymes responsible for 2-AG production during retinoic acid (RA)-induced neurite outgrowth of Neuro-2a cells. First, we confirmed that RA stimulation of Neuro-2a cells increases 2-AG production and neurite outgrowth. The diacylglycerol lipase (DAGL) inhibitor DH376 blocked 2-AG production and reduced neuronal differentiation. Surprisingly, CRISPR/Cas9-mediated knockdown of DAGLalpha and DAGLbeta in Neuro-2a cells did not reduce 2-AG levels, suggesting another enzyme capable of producing 2-AG in this cell line. Chemical proteomics revealed DAGLbeta and alpha,beta-hydrolase domain containing protein (ABHD6) as the only targets of DH376 in Neuro-2a cells. Biochemical, genetic and lipidomic studies demonstrated that ABHD6 possesses DAGL activity in conjunction with its previously reported monoacylglycerol lipase activity. RA treatment of Neuro-2a cells increased by three-fold the amount of active ABHD6. Our study shows that ABHD6 exhibits significant DAG lipase activity in Neuro-2a cells in addition to its known MAG lipase activity and suggest it is involved in neuronal differentiation.
        
Title: The Inhibitory Effect of alpha/beta-Hydrolase Domain-Containing 6 (ABHD6) on the Surface Targeting of GluA2- and GluA3-Containing AMPA Receptors Wei M, Jia M, Zhang J, Yu L, Zhao Y, Chen Y, Ma Y, Zhang W, Shi YS, Zhang C Ref: Front Mol Neurosci, 10:55, 2017 : PubMed
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) are major excitatory receptors that mediate fast neurotransmission in the mammalian brain. The surface expression of functional AMPARs is crucial for synaptic transmission and plasticity. AMPAR auxiliary subunits control the biosynthesis, membrane trafficking, and synaptic targeting of AMPARs. Our previous report showed that alpha/beta-hydrolase domain-containing 6 (ABHD6), an auxiliary subunit for AMPARs, suppresses the membrane delivery and function of GluA1-containing receptors in both heterologous cells and neurons. However, it remained unclear whether ABHD6 affects the membrane trafficking of glutamate receptor subunits, GluA2 and GluA3. Here, we examine the effects of ABHD6 overexpression in HEK293T cells expressing GluA1, GluA2, GluA3, and stargazin, either alone or in combination. The results show that ABHD6 suppresses the glutamate-induced currents and the membrane expression of AMPARs when expressing GluA2 or GluA3 in the HEK293T cells. We generated a series of GluA2 and GluA3 C-terminal deletion constructs and confirm that the C-terminus of GluAs is required for ABHD6's inhibitory effects on glutamate-induced currents and surface expression of GluAs. Meanwhile, our pull-down experiments reveal that ABHD6 binds to GluA1-3, and deletion of the C-terminal domain of GluAs abolishes this binding. These findings demonstrate that ABHD6 inhibits the AMPAR-mediated currents and its surface expression, independent of the type of AMPAR subunits, and this inhibitor's effects are mediated through the binding with the GluAs C-terminal regions.
In the brain, AMPA-type glutamate receptors are major postsynaptic receptors at excitatory synapses that mediate fast neurotransmission and synaptic plasticity. alpha/beta-Hydrolase domain-containing 6 (ABHD6), a monoacylglycerol lipase, was previously found to be a component of AMPA receptor macromolecular complexes, but its physiological significance in the function of AMPA receptors (AMPARs) has remained unclear. The present study shows that overexpression of ABHD6 in neurons drastically reduced excitatory neurotransmission mediated by AMPA but not by NMDA receptors at excitatory synapses. Inactivation of ABHD6 expression in neurons by either CRISPR/Cas9 or shRNA knockdown methods significantly increased excitatory neurotransmission at excitatory synapses. Interestingly, overexpression of ABHD6 reduced glutamate-induced currents and the surface expression of GluA1 in HEK293T cells expressing GluA1 and stargazin, suggesting a direct functional interaction between these two proteins. The C-terminal tail of GluA1 was required for the binding between of ABHD6 and GluA1. Mutagenesis analysis revealed a GFCLIPQ sequence in the GluA1 C terminus that was essential for the inhibitory effect of ABHD6. The hydrolase activity of ABHD6 was not required for the effects of ABHD6 on AMPAR function in either neurons or transfected HEK293T cells. Thus, these findings reveal a novel and unexpected mechanism governing AMPAR trafficking at synapses through ABHD6.
Suppression of alpha/beta-domain hydrolase-6 (ABHD6), a monoacylglycerol (MAG) hydrolase, promotes glucose-stimulated insulin secretion by pancreatic beta cells. We report here that high-fat-diet-fed ABHD6-KO mice show modestly reduced food intake, decreased body weight gain and glycemia, improved glucose tolerance and insulin sensitivity, and enhanced locomotor activity. ABHD6-KO mice also show increased energy expenditure, cold-induced thermogenesis, brown adipose UCP1 expression, fatty acid oxidation, and white adipose browning. Adipose browning and cold-induced thermogenesis are replicated by the ABHD6 inhibitor WWL70 and by antisense oligonucleotides targeting ABHD6. Our evidence suggests that one mechanism by which the lipolysis derived 1-MAG signals intrinsic and cell-autonomous adipose browning is via PPARalpha and PPARgamma activation, and that ABHD6 regulates adipose browning by controlling signal competent 1-MAG levels. Thus, ABHD6 regulates energy homeostasis, brown adipose function, and white adipose browning and is a potential therapeutic target for obesity and type 2 diabetes.
alpha/beta Hydrolase domain-containing 6 (ABHD6) can act as monoacylglycerol hydrolase and is believed to play a role in endocannabinoid signaling as well as in the pathogenesis of obesity and liver steatosis. However, the mechanistic link between gene function and disease is incompletely understood. Here we aimed to further characterize the role of ABHD6 in lipid metabolism. We show that mouse and human ABHD6 degrade bis(monoacylglycero)phosphate (BMP) with high specific activity. BMP, also known as lysobisphosphatidic acid, is enriched in late endosomes/lysosomes, where it plays a key role in the formation of intraluminal vesicles and in lipid sorting. Up to now, little has been known about the catabolism of this lipid. Our data demonstrate that ABHD6 is responsible for approximately 90% of the BMP hydrolase activity detected in the liver and that knockdown of ABHD6 increases hepatic BMP levels. Tissue fractionation and live-cell imaging experiments revealed that ABHD6 co-localizes with late endosomes/lysosomes. The enzyme is active at cytosolic pH and lacks acid hydrolase activity, implying that it degrades BMP exported from acidic organelles or de novo-formed BMP. In conclusion, our data suggest that ABHD6 controls BMP catabolism and is therefore part of the late endosomal/lysosomal lipid-sorting machinery.
        
Title: Discovery and optimization of piperidyl-1,2,3-triazole ureas as potent, selective, and in vivo-active inhibitors of alpha/beta-hydrolase domain containing 6 (ABHD6) Hsu KL, Tsuboi K, Chang JW, Whitby LR, Speers AE, Pugh H, Cravatt BF Ref: Journal of Medicinal Chemistry, 56:8270, 2013 : PubMed
alpha/beta-Hydrolase domain containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) to regulate certain forms of cannabinoid receptor-dependent signaling in the nervous system. The full spectrum of ABHD6 metabolic activities and functions is currently unknown and would benefit from selective, in vivo-active inhibitors. Here, we report the development and characterization of an advanced series of irreversible (2-substituted)-piperidyl-1,2,3-triazole urea inhibitors of ABHD6, including compounds KT182 and KT203, which show exceptional potency and selectivity in cells (<5 nM) and, at equivalent doses in mice (1 mg kg(-1)), act as systemic and peripherally restricted ABHD6 inhibitors, respectively. We also describe an orally bioavailable ABHD6 inhibitor, KT185, that displays excellent selectivity against other brain and liver serine hydrolases in vivo. We thus describe several chemical probes for biological studies of ABHD6, including brain-penetrant and peripherally restricted inhibitors that should prove of value for interrogating ABHD6 function in animal models.
        
Title: Development and optimization of piperidyl-1,2,3-triazole ureas as selective chemical probes of endocannabinoid biosynthesis Hsu KL, Tsuboi K, Whitby LR, Speers AE, Pugh H, Inloes J, Cravatt BF Ref: Journal of Medicinal Chemistry, 56:8257, 2013 : PubMed
We have previously shown that 1,2,3-triazole ureas (1,2,3-TUs) act as versatile class of irreversible serine hydrolase inhibitors that can be tuned to create selective probes for diverse members of this large enzyme class, including diacylglycerol lipase-beta (DAGLbeta), a principal biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we provide a detailed account of the discovery, synthesis, and structure-activity relationship (SAR) of (2-substituted)-piperidyl-1,2,3-TUs that selectively inactivate DAGLbeta in living systems. Key to success was the use of activity-based protein profiling (ABPP) with broad-spectrum and tailored activity-based probes to guide our medicinal chemistry efforts. We also describe an expanded repertoire of DAGL-tailored activity-based probes that includes biotinylated and alkyne agents for enzyme enrichment coupled with mass spectrometry-based proteomics and assessment of proteome-wide selectivity. Our findings highlight the broad utility of 1,2,3-TUs for serine hydrolase inhibitor development and their application to create selective probes of endocannabinoid biosynthetic pathways.
The endocannabinoid 2-arachidonoylglycerol (2-AG) regulates neurotransmission and neuroinflammation by activating CB1 cannabinoid receptors on neurons and CB2 cannabinoid receptors on microglia. Enzymes that hydrolyze 2-AG, such as monoacylglycerol lipase, regulate the accumulation and efficacy of 2-AG at cannabinoid receptors. We found that the recently described serine hydrolase alpha-beta-hydrolase domain 6 (ABHD6) also controls the accumulation and efficacy of 2-AG at cannabinoid receptors. In cells from the BV-2 microglia cell line, ABHD6 knockdown reduced hydrolysis of 2-AG and increased the efficacy with which 2-AG can stimulate CB2-mediated cell migration. ABHD6 was expressed by neurons in primary culture and its inhibition led to activity-dependent accumulation of 2-AG. In adult mouse cortex, ABHD6 was located postsynaptically and its selective inhibition allowed the induction of CB1-dependent long-term depression by otherwise subthreshold stimulation. Our results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.
        
Title: An unannotated alpha/beta hydrolase superfamily member, ABHD6 differentially expressed among cancer cell lines Li F, Fei X, Xu J, Ji C Ref: Mol Biol Rep, 36:691, 2009 : PubMed
Abhydrolase domain containing (Abhd) gene was a small group belongs to alpha/beta hydrolase superfamily. Known members of this group are all found to be involved in important biochemical processes and related to various diseases. In this paper, we report the tissue distribution, subcellular location and differential distribution among cancer cell lines of Abhd6, one unannotated member of this group.
        
Title: High expression of the evolutionarily conserved alpha/beta hydrolase domain containing 6 (ABHD6) in Ewing tumors Max D, Hesse M, Volkmer I, Staege MS Ref: Cancer Sci, 100:2383, 2009 : PubMed
Despite improvements in the treatment of patients with Ewing family tumors (EFT), the prognosis for patients with advanced disease is still unsatisfactory. Recently, we identified lipase I as an EFT-associated gene that might be interesting for the development of new immunological or pharmacological treatment strategies. Lipase I is a member of the large protein superfamilies of alpha/beta hydrolases and serine hydrolases. In the present paper we describe high expression of another member of these superfamilies in EFT. By DNA microarray data base mining we found exceptional high expression of alpha/beta hydrolase domain containing 6 (ABHD6) in EFT but not in other sarcomas. Expression of ABHD6 in EFT correlated with expression of another EFT-associated gene, aristaless. Analysis of ABHD6-associated GGAA microsatellites revealed shorter microsatellites in EFT with lack of ABHD6 expression. ABHD6 homologues were found in varying chordata but not in other animal species. Based on homology modeling we predicted the 3D-structure of ABHD6, which shows high similarity with bacterial homoserine transacetylases. High expression of ABHD6 in EFT in comparison to normal tissues and other tumors suggests that ABHD6 might be an interesting new diagnostic or therapeutic target for EFT. However, knock down of ABHD6 in EFT cells did not inhibit tumor cell growth.
        
Title: A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol Blankman JL, Simon GM, Cravatt BF Ref: Chemical Biology, 14:1347, 2007 : PubMed
Endogenous ligands for cannabinoid receptors ("endocannabinoids") include the lipid transmitters anandamide and 2-arachidonoylglycerol (2-AG). Endocannabinoids modulate a diverse set of physiological processes and are tightly regulated by enzymatic biosynthesis and degradation. Termination of anandamide signaling by fatty acid amide hydrolase (FAAH) is well characterized, but less is known about the inactivation of 2-AG, which can be hydrolyzed by multiple enzymes in vitro, including FAAH and monoacylglycerol lipase (MAGL). Here, we have taken a functional proteomic approach to comprehensively map 2-AG hydrolases in the mouse brain. Our data reveal that approximately 85% of brain 2-AG hydrolase activity can be ascribed to MAGL, and that the remaining 15% is mostly catalyzed by two uncharacterized enzymes, ABHD6 and ABHD12. Interestingly, MAGL, ABHD6, and ABHD12 display distinct subcellular distributions, suggesting that they may control different pools of 2-AG in the nervous system.
A lipase gene (lip3) was cloned from the Pseudomonas aeruginosa strain LST-03 (which tolerates organic solvents) and expressed in Escherichia coli. The cloned sequence includes an ORF consisting of 945 nucleotides, encoding a protein of 315 amino acids (Lip3 lipase, 34.8 kDa). The predicted Lip3 lipase belongs to the class of serine hydrolases; the catalytic triad consists of the residues Ser-137, Asp-258, and His-286. The gene cloned in the present study does not encode the LST-03 lipase, a previously isolated solvent-stable lipase secreted by P. aeruginosa LST-03, because the N-terminal amino acid sequence of the Lip3 lipase differs from that of the LST-03 lipase. Although the effects of pH on the activity and stability of the Lip3 lipase, and the temperature optimum of the enzyme, were similar to those of the LST-03 lipase, the relative activity of the Lip3 lipase at lower temperatures (0-35 degrees C) was higher than that of the LST-03 lipase. In the absence of organic solvents, the half-life of the Lip3 lipase was similar to that of the LST-03 lipase. However, in the presence of most of the organic solvents tested in this study (the exceptions were ethylene glycol and glycerol), the stability of the Lip3 lipase was lower than that of the LST-03 lipase.
        
Title: Lipases for biotechnology Jaeger KE, Eggert T Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed
Lipases constitute the most important group of biocatalysts for biotechnological applications. The high-level production of microbial lipases requires not only the efficient overexpression of the corresponding genes but also a detailed understanding of the molecular mechanisms governing their folding and secretion. The optimisation of industrially relevant lipase properties can be achieved by directed evolution. Furthermore, novel biotechnological applications have been successfully established using lipases for the synthesis of biopolymers and biodiesel, the production of enantiopure pharmaceuticals, agrochemicals, and flavour compounds.
        
Title: Bacterial lipolytic enzymes: classification and properties Arpigny JL, Jaeger KE Ref: Biochemical Journal, 343:177, 1999 : PubMed
Knowledge of bacterial lipolytic enzymes is increasing at a rapid and exciting rate. To obtain an overview of this industrially very important class of enzymes and their characteristics, we have collected and classified the information available from protein and nucleotide databases. Here we propose an updated and extensive classification of bacterial esterases and lipases based mainly on a comparison of their amino acid sequences and some fundamental biological properties. These new insights result in the identification of eight different families with the largest being further divided into six subfamilies. Moreover, the classification enables us to predict (1) important structural features such as residues forming the catalytic site or the presence of disulphide bonds, (2) types of secretion mechanism and requirement for lipase-specific foldases, and (3) the potential relationship to other enzyme families. This work will therefore contribute to a faster identification and to an easier characterization of novel bacterial lipolytic enzymes.
        
Title: Nucleotide sequence of the lipase gene lip3 from the antarctic psychotroph Moraxella TA144 Feller G, Thiry M, Gerday C Ref: Biochimica & Biophysica Acta, 1088:323, 1991 : PubMed
A lipase gene (lip3) from the psychotrophic strain Moraxella TA144 has been cloned and sequenced. The deduced primary structure of the lipase preprotein is composed of 315 amino acids with a predicted Mr of 34,772. This enzyme contains two consensus peptides showing cluster of glycine residues that may be involved in domain flexibility. The cloned gene product conserves the low temperature activity and the thermolability properties of the wild enzyme.